Show all work and circle/box your final answer. All answers must be simplified unless stated otherwise.

REVIEW (optional)

- 1. (0 points) Use intervals to describe the real numbers satisfying the following inequalities:
 - (a) $2 \le x < 3$
 - (b) x < 3
- **2.** (0 points) If $g(t) = t^3 3t^3 + t$, find g(2) and g(a)
- **3.** (0 points) Find the domain of the following functions

(a)
$$f(x) = \frac{3x-5}{x^2+x-6}$$

(b)
$$\sqrt{2x+7} + \sqrt{x}$$

- **4.** (0 points) Let $f(x) = \begin{cases} \pi x^2 & , x < 2 \\ 1 + x & , 2 \le x \le 2.5 \text{ Find } f(1), f(2), \text{ and } f(3). \\ 4x & , x > 2.5 \end{cases}$
- **5.** (0 points) Graph the following: y = 3x + 1 and y = -2x + 3.
- **6.** (*0 points*) In 2010, a patient paid \$700 per day for a semiprivate hospital room and \$1900 for an appendectomy operation. Express the total amount paid for an appendectomy as a function of the number of days of hospital confinement.
- 7. (0 points) Express $\frac{x}{x-8} \frac{x}{x-4}$ as a rational function.
- 8. (0 points) Factor the following:
 - (a) $x^2 + 8x + 15$
 - (b) $x^2 16$
 - (c) $3x^2 + 12x + 12$
 - (d) $3x x^2$

- **9.** (θ points) Simplify the following expressions:
- (a) $\left(\frac{x^4}{y^2}\right)^3$
- (b) $\frac{-x^3y}{-xy}$
- (c) $8^{4/3}$
- (d) $16^{1/2}$
- 10. (0 points) Find the equations of the lines satisfying the following properties:
 - (a) Slope is -1; (7,1) is on the line
 - (b) (0,0) and (1,0) is on the line
 - (c) Parallel to y = 3x + 7 and (2,0) is on the line
 - (d) Perpendicular to y = -x and (2,0) is on the line

MAIN PROBLEMS

11. (0 points) Find the following limits:

(a)
$$\lim_{x\to 3} \sqrt{x^2 + 16}$$

(d)
$$\lim_{x \to 6^{-}} \frac{|x-6|}{x-6}$$

(b)
$$\lim_{x\to 0} \frac{x^2 + 3x}{x}$$

(e)
$$\lim_{x\to 0} \frac{\sqrt{x^2+9}-3}{x^2}$$

(c)
$$\lim_{x \to 2} \frac{3x^2 - x - 10}{x^2 - 4}$$

(f)
$$\lim_{x \to \infty} \frac{x^3 + 2x^2 + 1}{5x^5 + 4x^4 + 7}$$

12. (0 points) Evaluate the following limits for f(x)

$$f(x) = \begin{cases} x^2 - 3x + 4 & x \le 1 \\ x + 1 & 1 < x \le 3 \\ x^2 - 3x + 4 & x > 3 \end{cases}$$

(a)
$$\lim_{x \to 1^{-}} f(x)$$

(d)
$$\lim_{x \to 3^{-}} f(x)$$

(b)
$$\lim_{x \to 1^+} f(x)$$

(e)
$$\lim_{x \to 3^+} f(x)$$

(c)
$$\lim_{x\to 1} f(x)$$

(f)
$$\lim_{x\to 3} f(x)$$

13. (0 points) Using the graph of f(x) below, find the following limits:

(a)
$$\lim_{x \to 1^+} f(x)$$

(b)
$$\lim_{x \to -4} f(x)$$

(c)
$$\lim_{x\to 6} f(x)$$