Check Your Understanding 0.1

- 1. Is the point (3,12) on the graph of the function $q(x) = x^2 + 5x - 10$?
- 2. Sketch the graph of the function $h(t) = t^2 2$.

EXERCISES 0.1

Draw the following intervals on the number line.

1.
$$[-1,4]^*$$

2.
$$(4,3\pi)$$

2.
$$(4,3\pi)^*$$
 3. $[-2,\sqrt{2})^*$

4.
$$[1,\frac{3}{2}]$$

4.
$$[1, \frac{3}{2}]^*$$
 5. $(-\infty, 3)^*$ 6. $(4, \infty)^*$

6.
$$(4, \infty)^*$$

Use intervals to describe the real numbers satisfying the inequalities in Exercises 7-12.

7.
$$2 \le x < 3$$
 [2,3]

7.
$$2 \le x < 3$$
 [2,3] 8. $-1 < x < \frac{3}{2}$ (-1,3/2)

9.
$$x < 0$$
 and $x \ge -1$

9.
$$x < 0$$
 and $x \ge -1$ 10. $x \ge -1$ and $x < 8$ $[-1, 8)$ 11. $x < 3$ $(-\infty, 3)$ $[-1, 0)$ 12. $x \ge \sqrt{2}$ $[\sqrt{2}, \infty)$

11.
$$x < 3 \ (-\infty, 3)$$
 [-1,

12.
$$x \ge \sqrt{2} \ [\sqrt{2}, \infty)$$

13. If
$$f(x) = x^2 - 3x$$
, find $f(0)$, $f(5)$, $f(3)$, and $f(-7)$. 0, 10, 0, 70

14. If
$$f(x) = x^3 + x^2 - x - 1$$
, find $f(1)$, $f(-1)$, $f(\frac{1}{2})$, and $f(a)$.

15. If
$$g(t) = t^3 - 3t^2 + t$$
, find $g(2)$, $g(-\frac{1}{2})$, $g(\frac{2}{3})$, and $g(a)$.

16. If
$$h(s) = s/(1+s)$$
, find $h(\frac{1}{2})$, $h(-\frac{3}{2})$, and $h(a+1) \cdot \frac{1/3}{(a+1)/(a+2)}$

17. If
$$f(x) = x^2 - 2x$$
, find $f(a+1)$ and $f(a+2)$. $a^2 - 1$, $a^2 + 2a$

18. If
$$f(x) = x^2 + 4x + 3$$
, find $f(a-1)$ and $f(a-2)$.

- 19. Computer Sales An office supply firm finds that the number of laptop computers sold in year x is given approximately by the function $f(x) = 150 + 2x + x^2$, where x = 0corresponds to 2010.
 - (a) What does f(0) represent? Sales in 2010
 - (b) Find the number of laptops sold in 2016. f(6) = 198
- 20. Response of a Muscle When a solution of acetylcholine is introduced into the heart muscle of a frog, it diminishes

the force with which the muscle contracts. The data from experiments of the biologist A. J. Clark are closely approximated by a function of the form

$$R(x) = \frac{100x}{b+x}, \qquad x \ge 0,$$

where x is the concentration of acetylcholine (in appropriate units), b is a positive constant that depends on the particular frog, and R(x) is the response of the muscle to the acetylcholine, expressed as a percentage of the maximum possible effect of the drug.

- (a) Suppose that b = 20. Find the response of the muscle when x = 60. R(60) = 75
- (b) Determine the value of b if R(50) = 60, that is, if a concentration of x = 50 units produces a 60%response. b = 100/3

In Exercises 21-28, describe the domain of the function.

21.
$$f(x) = \frac{8x}{(x-1)(x-2)}$$
 $x \neq 1, 2$ **22.** $f(t) = \frac{1}{\sqrt{t}}$ $t > 0$ $(0, \infty)$

23.
$$g(x) = \frac{1}{\sqrt{3-x}} \ x < 3$$
 24. $g(x) = \frac{4}{x(x+2)}$

25.
$$f(x) = \frac{3x-5}{x^2+x-6}$$
 $x \neq -3, 2$ **26.** $f(x) = \frac{1}{3x^2+1}$ All x

27.
$$f(x) = \sqrt{2x+7} + \sqrt{x} \ x \ge 0$$
 28. $f(x) = \frac{\sqrt{2x+1}}{\sqrt{1-x}}$

* indicates answers that are in the back of the book. 14. 0, 0, -9/8, $a^3 + a^2 - a - 1$ 15. g(2) = -2, g(-1/2) = -11/8, g(2/3) = -2

$$-10/27 = -.37037, \ g(a) = a^3 - 3a^2 + a \quad 18. \ f(a-1) = a^2 + 2a, \ f(a-2) = a^2 - 1 \quad 24. \ x \neq 0, \ x \neq -2 \ (-\infty, -2) \cup (-2, 0) \cup (0, \infty)$$

Check Your Understanding 0.3

- 1. Let $f(x) = x^5$, $g(x) = x^3 4x^2 + x 8$.
 - (a) Find f(g(x)).
- (b) Find g(f(x)).
- **2.** Let $f(x) = x^2$. Calculate $\frac{f(1+h) f(1)}{h}$ and simplify.

EXERCISES 0.3

Let $f(x) = x^2 + 1$, g(x) = 9x, and $h(x) = 5 - 2x^2$. Calculate the following functions.

- 1. $f(x) + g(x) x^2 + 9x + 1$ 2. $f(x) h(x) 3x^2 4$
- 3. $f(x)g(x) 9x^3 + 9x$ 4. $g(x)h(x) 45x 18x^3$
- 6. $\frac{g(t)}{h(t)} \frac{9t}{5-2t^2}$

In Exercises 7–12, express f(x) + g(x) as a rational function. Carry out all multiplications.

- 7. $f(x) = \frac{2}{x-3}$, $g(x) = \frac{1}{x+2} \frac{3x+1}{x^2-x-6}$
- 8. $f(x) = \frac{3}{x-6}$, $g(x) = \frac{-2}{x-2} \frac{x+6}{x^2-8x+12}$
- 9. $f(x) = \frac{x}{x-8}$, $g(x) = \frac{-x}{x-4} = \frac{4x}{x^2-12x+32}$
- **10.** $f(x) = \frac{-x}{x+3}$, $g(x) = \frac{x}{x+5} \frac{-2x}{x^2+8x+15}$
- 11. $f(x) = \frac{x+5}{x-10}$, $g(x) = \frac{x}{x+10} \frac{2x^2+5x+50}{x^2-100}$
- 12. $f(x) = \frac{x+6}{x-6}$, $g(x) = \frac{x-6}{x+6}$ $\frac{2x^2+72}{x^2-36}$
- Let $f(x) = \frac{x}{x-2}$, $g(x) = \frac{5-x}{5+x}$, and $h(x) = \frac{x+1}{3x-1}$

Express the following as rational functions.

- 13. f(x) g(x)
- **14.** $f(t) h(t) 3t^2 7t + 2$

- 15. $f(x)g(x) = \frac{-x^2 + 5x}{x^2 + 3x 10}$ 16. $g(x)h(x) = \frac{-x^2 + 4x + 5}{3x^2 + 14x 5}$ 17. $\frac{f(x)}{g(x)} = \frac{x^2 + 5x}{-x^2 + 7x 10}$ 18. $\frac{h(s)}{f(s)} = \frac{s^2 s 2}{3s^2 s}$
- **20.** $f(x+2) + g(x+2) \frac{12x+14}{x^2+7x}$
- **21.** $\frac{g(x+5)}{f(x+5)} \frac{-x^2-3x}{x^2+15x+50}$ **22.** $f\left(\frac{1}{t}\right) \frac{1}{-2t+1}$
- **23.** $g\left(\frac{1}{u}\right) \frac{5u-1}{5u+1}, u \neq 0$ **24.** $h\left(\frac{1}{x^2}\right) \frac{1+x^2}{2-x^2}$
- Let $f(x) = x^6$, $g(x) = \frac{x}{1-x}$, and $h(x) = x^3 5x^2 + 1$.

Calculate the following functions.

- 25. f(g(x)) 26. h(f(t)) $t^{18} 5t^{12} + 1$ 27. h(g(x)) $t^3 5t^2 + 1$ 28. g(f(x)) $\frac{x^6}{1 x^6}$ 30. f(h(x)) $(x^3 5x^2 + 1)^6$
- **31.** If $f(x) = x^2$, find f(x+h) f(x) and simplify. $2xh + h^2$
- **32.** If f(x) = 1/x, find f(x+h) f(x) and simplify. $\frac{-h}{x(x+h)}$
- 33. If $g(t) = 4t t^2$, find $\frac{g(t+h) g(t)}{h}$ and simplify 4 2t h 41. Based on the results of Exercises 38 and 39, sketch the
- **34.** If $g(t) = t^3 + 5$, find $\frac{g(t+h) g(t)}{h}$ and simplify. $3t^2 + 3th + h^2$ calculator. Check your result with a graphing calculator.

- 35. Cost After t hours of operation, an assembly line has assembled $A(t) = 20t - \frac{1}{2}t^2$ power lawn mowers, $0 \le t \le 10$. Suppose that the factory's cost of manufacturing x units is C(x) dollars, where C(x) = 3000 + 80x.
 - (a) Express the factory's cost as a (composite)function of the number of hours of operation of the assembly line. $C(f(t)) = 3000 + 1600t - 40t^2$
 - (b) What is the cost of the first 2 hours of operation? \$604
- 36. Cost During the first $\frac{1}{2}$ hour, the employees of a machine shop prepare the work area for the day's work. After that, they turn out 10 precision machine parts per hour, so the output after t hours is f(t) machine parts, where $f(t) = 10 \left(t - \frac{1}{2}\right) = 10t - 5$, $\frac{1}{2} \le t \le 8$. The total cost of producing x machine parts is C(x) dollars, where $C(x) = .1x^2 + 25x + 200.$
 - (a) Express the total cost as a (composite) function of t.*
 - (b) What is the cost of the first 4 hours of operation?
- 37. Conversion Scales Table 1 shows a conversion table for men's hat sizes for three countries. The function g(x) =8x + 1 converts from British sizes to French sizes, and the function $f(x) = \frac{1}{8}x$ converts from French sizes to U.S. sizes. Determine the function h(x) = f(g(x)) and give its interpretation. *

TABLE 1 Conversion Table for Men's Hat Sizes

 $6\frac{7}{8}$ $6\frac{3}{4}$ France 53 54 55 56 59 60 U.S. $7\frac{1}{2}$

Technology Exercises

- **38.** Let $f(x) = x^2$. Graph the functions f(x+1), f(x-1), f(x+2), and f(x-2). Make a guess about the relationship between the graph of a general function f(x) and the graph of f(g(x)), where g(x) = x + a for some constant a. Test your guess on the functions $f(x) = x^3$ and $f(x) = \sqrt{x}$
- 39. Shifting a Graph Let $f(x) = x^2$. Graph the functions f(x) + 1, f(x) - 1, f(x) + 2, and f(x) - 2. Make a guess about the relationship between the graph of a general function f(x) and the graph of f(x) + c for some constant c. Test your guess on the functions $f(x) = x^3$ and $f(x) = \sqrt{x}$.
- 40. Based on the results of Exercises 38 and 39, sketch the graph of $f(x) = (x-1)^2 + 2$ without using a graphing calculator. Check your result with a graphing calculator.
 - graph of $f(x) = (x+2)^2 1$ without using a graphing

* indicates answers that are in the back of the book.

13.
$$\frac{2x^2 - 2x + 10}{x^2 + 3x - 10}$$
 19. $\frac{-x^2 + 3x + 4}{x^2 + 5x - 6}$ 25. $\left(\frac{x}{1 - x}\right)^6$ 27. $\left(\frac{x}{1 - x}\right)^3 - 5\left(\frac{x}{1 - x}\right)^2 + 1$

Check Your Understanding 0.4

1. Solve the equation $x - \frac{14}{x} = 5$.

2. Use the quadratic formula to solve $7x^2 - 35x + 35 = 0$.

EXERCISES 0.4

Use the quadratic formula to find the zeros of the functions in Exercises 1-6.

1.
$$f(x) = 2x^2 - 7x + 6 \ 2, 3/2$$
 2. $f(x) = 3x^2 + 2x - 1 \ 1/3$ 23. $6x - 2x^3$

3.
$$f(t) = 4t^2 - 12t + 9 3/2$$

3.
$$f(t) = 4t^2 - 12t + 9 \ 3/2$$
 4. $f(x) = \frac{1}{4}x^2 + x + 1 \ x = -2$

5.
$$f(x) = -2x^2 + 3x - 4$$

No zero

5.
$$f(x) = -2x^2 + 3x - 4$$
 No zeros **6.** $f(a) = 11a^2 - 7a + 1$ $(7 \pm \sqrt{5})/22$ **27.** $8x^3 + 27$

Use the quadratic formula to solve the equations in Exercises 7-12.

7.
$$5x^2 - 4x - 1 = 0$$
 1, $-1/5$ 8. $x^2 - 4x + 5 = 0$ No soln

8.
$$x^2 - 4x + 5 = 0$$
 No soln

9.
$$15x^2 - 135x + 300 = 0$$
 10. $z^2 - \sqrt{2}z - \frac{5}{4} = 0$

10.
$$z^2 - \sqrt{2}z - \frac{5}{4} = 0$$

11.
$$\frac{3}{2}x^2 - 6x + 5 = 0$$
 5, 4 12. $9x^2 - 12x + 4 = 0$ $x = 2/3$

= 0 12.
$$9x^2 - 12x + 4 = 0$$
 $x = 2/3$ $2 + \sqrt{6}/3$, $2 - \sqrt{6}/3$

Factor the polynomials in Exercises 13-30.

13.
$$x^2 + 8x + 15(x+5)(x+3)$$
14. $x^2 - 10x + 16(x-2)(x-8)$

15.
$$x^2 - 16(x-4)(x+4)$$
 16. $x^2 - 1(x+1)(x-1)$

16.
$$x^2 - 1 (x+1)(x-1)$$

17.
$$3x^2 + 12x + 12 \ 3(x+2)^2$$
 18. $2x^2 - 12x + 18 \ 2(x-3)^2$

8.
$$2x^2 - 12x + 18 \ 2(x-3)$$

19.
$$30 - 4x - 2x^2$$

21.
$$3x - x^2 x(3-x)$$

23.
$$6x - 2x^3$$

25.
$$x^3 - 1 (x - 1)(x^2 + x + 1)$$

29.
$$x^2 - 14x + 49 (x - 7)^2$$

20.
$$15 + 12x - 3x^2 - 3(x - 5)(x - 5)$$

37. (

45. So.

22.
$$4x^2 - 1(2x+1)(2x-1)$$

24.
$$16x + 6x^2 - x^3 - x(x-8)(x+3)$$

25.
$$x^3 - 1(x - 1)(x^2 + x + 1)$$
 26. $x^3 + 125(x + 5)(x^2 - 5x + 2)$

28.
$$x^3 - \frac{1}{8} (x - 1/2)(x^2 + x/2 + x/2)$$

30.
$$x^2 + x + \frac{1}{4} (x + 1/2)^2$$

Find the points of intersection of the pairs of curves in Exercises 31-38.

31.
$$y = 2x^2 - 5x - 6$$
, $y = 3x + 4 (-1,1)$, $(5,19)$

32.
$$y = x^2 - 10x + 9$$
, $y = x - 9$ (9,0), (2, -7)

33.
$$y = x^2 - 4x + 4$$
, $y = 12 + 2x - x^2$ (-1,9), (4,4)

34.
$$y = 3x^2 + 9$$
, $y = 2x^2 - 5x + 3$ $(-3,36)$, $(-2,21)$

35.
$$y = x^3 - 3x^2 + x$$
, $y = x^2 - 3x$ (0,0), (2,-2)

10.
$$(\sqrt{2} \pm \sqrt{7})/2$$
 19. $-2(x-3)(x+5)$ 23. $-2x(x-\sqrt{3})(x+\sqrt{3})$ 27. $(2x+3)(4x^2-6x+9)$