Math 241, Fall 2018, Final Exam

Name and section number:

Instructor name:

- *•* You may not use notes or electronic devices on the test.
- *•* Please ask if anything seems confusing or ambiguous.
- *•* You must show all your work.
- *•* You do not need to simplify your answers.
- *•* Good luck!

1. Calculate the following limits. Do not use L'Hospital's rule. If the limit is positive or negative infinity, say which.

(a) (5 points)
$$
\lim_{x\to 3} \frac{x^2 - 4x + 3}{x^2 - 9}
$$
. $\frac{P \log 0}{\log 0}$ more work!

$$
\lim_{x\to 3} \frac{x^2-4x+3}{x^2-9} = \lim_{x\to 3} \frac{4-35(x-1)}{(x-5)(x+3)} = \lim_{x\to 3} \frac{x-1}{x+3} = \frac{3-1}{3+3} = \frac{2}{6} = \boxed{\frac{1}{3}}
$$

(b) (5 points)
$$
\lim_{x \to 2^+} \frac{(x+1)^2}{2-x}.
$$

$$
\lim_{x \to 2^+} \frac{(x+1)^2}{2-x} \to \frac{3^2}{0^-} \to -\infty
$$

(c) (5 points)
$$
\lim_{x\to0} \frac{\sin 3x}{2x(x-3)} \to \frac{6}{6}
$$
 more work!
\n $\lim_{x\to0} \frac{\sin (3x)}{2x(x-3)} = \lim_{x\to0} \frac{\sin (3x)}{x} \cdot \frac{1}{2(x-3)} = \lim_{x\to0} \frac{\sin (3x)}{3x} \cdot \frac{3}{2(x-3)}$
\n $= 1 \cdot (\frac{3}{2(-3)}) = 1 (\frac{-1}{2}) = \frac{-1}{2}$

(d) (5 points)
$$
\lim_{x \to \infty} \frac{x^2 + 1}{2x^2 + \sin x} \to \frac{\infty}{\infty}
$$
 more
\n $-1 \le \sin x \le 1 = 2x^2 - 1 \le 2x^2 + \sin x \le 2x^2 + 1$ $(x \to \infty$ so an assume)
\n $= 2 \frac{1}{2x^2 - 1} \ge \frac{1}{2x^2 + 3 \sin x} \ge \frac{1}{2x^2 + 1} = 2 \frac{x^2 + 1}{2x^2 - 1} \ge \frac{x^2 + 1}{2x^2 + 1}$
\n $\lim_{x \to \infty} \frac{x^2 + 1}{2x^2 - 1} = \lim_{x \to \infty} \frac{x^2 / x^2 + 1}{2x^2 / x^2 - 1} = \lim_{x \to \infty} \frac{1 + 1/1}{2x^2 + 1} = \lim_{x \to \infty} \frac{x^2 / x^2 + 1}{2x^2 + 1} = \lim_{x \to \infty} \frac{x^2 / x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 / x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 / x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 + 1} = \lim_{x \to \infty} \frac{x^2 + 1}{2x^2 / x^2 +$

theorem

 $\frac{1}{2}$

2. (6 points) Using the definition of the derivative as a limit, compute $f'(2)$ if $f(x) = \sqrt{2x+1}$. (Warning: you will get no credit if you use the rules of differentiation).

$$
f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{\sqrt{2(2+h)+1} - \sqrt{2(2)+1}}{h} = \lim_{h \to 0} \frac{\sqrt{4+2h+1} - \sqrt{5}}{h}
$$

= $\lim_{h \to 0} \frac{\sqrt{5+2h} - \sqrt{5}}{h} \cdot \frac{\sqrt{5+2h} + \sqrt{5}}{\sqrt{5+2h} + \sqrt{5}} = \lim_{h \to 0} \frac{(5+2h) - 5}{h(\sqrt{5+2h} + \sqrt{5})} = \lim_{h \to 0} \frac{2k}{h(\sqrt{5+2h} + \sqrt{5})} = \lim_{h \to 0} \frac{2}{h(\sqrt{5+2h} + \sqrt{5})} = \frac{2}{\sqrt{5} + \sqrt{5}} = \frac{2}{2\sqrt{5}} = \frac{1}{\sqrt{5}}$

3. (4 points) Let
$$
f(x) = \begin{cases} Ax & x \le -1 \\ x^2 - 3Ax + 3 & x > -1 \end{cases}
$$
.

For which values of A is the function f continuous?

What is the number of two numbers:

\n
$$
x^2 - 1 = x^2 - 1 + 2
$$
\n
$$
x^2 - 1 = x^2 - 1 + 2
$$
\n
$$
x^2 - 1 = x^2 - 1 - 2
$$
\n
$$
x^2 - 1 = x^2 - 1 - 2
$$
\n
$$
x^2 - 1 = x^2 - 1 - 2
$$
\n
$$
x^2 - 1 + x^2 - 1 +
$$

4. Differentiate the following functions. You do not need to simplify your answers.

(a) (5 points)
$$
f(x) = \frac{x^3}{2x^2 - 5}
$$
 qootient role

$$
f'(x) = \frac{(2x^2-5)(3x^2) - (x^3)(4x)}{(2x^2-5)^2}
$$

(b) (5 points)
$$
g(x) = 3x \sin(x^2)
$$

g'(x)= $3\sin(x^2) + 3x \cos(x^2)(2x)$
(product and chain rule)

(c) (5 points)
$$
h(x) = (\sqrt{x} - \frac{1}{x^4} + \pi^3)^5
$$

\n**n(x)=** $(x^{\frac{1}{2}} - x^{-\frac{1}{4}} + \pi^3)^5$
\n**h'(x)=** $5(x^{\frac{1}{2}} - x^{-\frac{1}{4}} + \pi^3)^5$
\n(Chain rule)

(d) (5 points)
$$
R(x) = \int_{1}^{2x} (t + t^4)^3 dt
$$

\nlet $u = 2x = 3 \frac{du}{dx} = 2$
\n $P'(x) = (\frac{d}{du} \int_{1}^{u} (t + t^4)^3 dt) \frac{du}{dx} = (u + u^4)^3 (2) = 2(2x + (2x)^4)^3$

5. (a) (5 points) Use linear approximation and the fact that $\sqrt{4} = 2$ to find an approximation to $\sqrt{3.99}$.

$$
f(x) = \sqrt{x} = x^{1/2} \Rightarrow f'(x) = \frac{1}{2}x^{1/2} = \frac{1}{2\sqrt{x}}
$$

\n
$$
L(x) = f(a) + f'(a) (x-a) = \sqrt{4} + \frac{1}{2\sqrt{4}} (x-4) = 2 + \frac{1}{4} (x-4)
$$

\n
$$
L(3.99) = 2 + \frac{3.99 - 4}{4} = \boxed{2 - \frac{0.01}{4}}
$$

(b) (1 point) Is the exact value for $\sqrt{3.99}$ more or less than the number you calculated in the previous part?

6. (6 points) Find an equation for the tangent line to the graph of $x^3 - 3x^2y + 2xy^2 = 0$ at the point (1*,* 1). $product$

$$
x^3-3x^2y+2xy^2=0 \Rightarrow 3x^2-(6xy+3x^2\frac{dy}{dx})+(2y^2+2x(2y\frac{dy}{dx}))=0
$$

 $2-(6+3\frac{dy}{dx})+(2+4\frac{dy}{dx})=0 \Rightarrow 3-6-3\frac{dy}{dx}+2+4\frac{dy}{dx}=0 \Rightarrow \frac{dy}{dx}-1=0 \Rightarrow \frac{dy}{dx}=1$
 $\sqrt{1-1}=1(x-1)$

7. (10 points) Superman is chasing a villain who is driving along a straight highway in a car. Superman flies at a speed of 200 feet per second, and at a constant height of 30 feet. The villain is driving at a speed of 100 feet per second. What is the rate of change of the distance between Superman and the villain when Superman is directly above a point that is 40 feet behind the villain's car?

When $x=40$: $(40)^2+(30)^2=2^2$ => $1600+900=2^2$ => $2500=2^2$ => $2=50$

$$
\chi^{2}+(80)^{2}=2^{2}=2\times\frac{dx}{dt}+0=2z\frac{dz}{dt}=2(40)(100)=2(50)\frac{dz}{dt}
$$

=2 $\frac{dz}{dt}=\frac{2(40)(100)}{100}=80$ ft/sec

8. (10 points) A landscape artist plans to create a rectangular garden whose area is $10 m^2$. She plans to enclose three sides of the rectangle using trees that cost \$25 per meter, and to use fencing which costs \$20 per meter on the fourth side. Find the dimensions of the garden that will minimize her cost.

$$
\frac{425}{125} \times \frac{10}{125} \times \frac{10}{125} \times \frac{10}{125} \times \frac{10}{125}
$$

\nC = 25x + 25y + 25x + 20y = 50x + 45y
\n10 = xy = 3y = $\frac{10}{x}$
\nC(x) = 50x + 45 $\left(\frac{10}{x}\right)$ = 50x + $\frac{450}{x}$ = 50x + 450x⁻¹
\nC'(x) = 50 - 450x⁻² = 50 - $\frac{450}{x^2}$
\nC'(x) = 0 = 50 = $\frac{450}{x^2}$ = 50x² = 450 = 5x² = 9 = 3x = 3 = 3y = $\frac{10}{3}$
\n $\frac{3}{13} \times \frac{10}{3} \times \frac{10}{3} \times \frac{10}{3}$

9. Let $f(x) = \frac{1}{x^2 - 1}$. You may use that $f' = \frac{-2x}{(x^2 - 1)^2}$ and $f'' = \frac{6x^2 + 2}{(x^2 - 1)^3}$. (a) (2 points) Find the vertical asymptotes of the graph of f .

$$
f(x) = \frac{1}{x^2 - 1} = \frac{1}{(x-1)(x+1)} \implies \text{V.A are } x = 1, x = -1
$$

(b) (2 points) Find the horizontal asymptotes of the graph.

$$
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{x^2 - 1} = 0
$$
\n
$$
\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} \frac{1}{x^2 - 1} = 0
$$
\n
$$
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{x^2 - 1} = 0
$$

(c) (2 points) Find the intervals where f is increasing.

increasing when f' >o
\nf'(x)=0 =& 0 x=0
\nf'(x) under. when
$$
(x^2-1)^2=0
$$
 =& 0 $(x-1)^2(x+1)^2=0$ =& 0 $x=1$
\nf' $\frac{+}{-1} + \frac{+}{0} + \frac{+}{1} = 0$ $= 0$ $(-\infty, -1), (-1, 0)$

Recall that
$$
f' = \frac{-2x}{(x^2-1)^2}
$$
 and $f'' = \frac{6x^2+2}{(x^2-1)^3}$
\n(d) (2 points) Find the intervals where *f* is concave up.
\n**Concave up when** $f'' > 0$
\n $f''(x) = 0$ never, $f''(x)$ under when $(x^2-1)^3 = 0 \Rightarrow (x-1)^3(x+1)^3 = 0 \Rightarrow x = \pm 1$
\n $f''(x) = 0$ never, $f''(x)$ under when $(x^2-1)^3 = 0 \Rightarrow (x-1)^3(x+1)^3 = 0 \Rightarrow x = \pm 1$

(e) (2 points) Find the maximal value of f in the interval $\left[4, 6\right]$

cr # = 0 (outside in).)

$$
f(4) = \frac{1}{16} = \frac{1}{15} = f(6) = \frac{1}{36 \cdot 1} = \frac{1}{35}
$$

max is 1/15

(f) (2 points) Sketch of the graph of $y = f(x)$.

10. Below is the graph of the **derivative** of the function *f* in the interval $0 \le x \le 4$.

- (a) (3 points) Find the intervals in which *f* is increasing. when $f' > 0$ (above $x-axis$): $(0,2)$
- (b) (3 points) Find the intervals in which *f* is concave down.

when $f'' < 0$ (graph dec.): $(1,3)$

(c) (3 points) At which *x* between 0 and 4 does *f* attain its maximal value? Explain your answer.

graph changes from above x-axis to below (i.e. f' changes from $+$ to $-$) at x=2 (only sign change) so <u>Ix</u>

(d) (1 point) Is it possible for the equation $f(x) = 0$ to have 3 solutions in the interval $1 \leq x \leq 3?$

 $\boxed{\text{no}}$ by MVT => f'=0 at least twice

 $11.$ Compute each of the following. $\,$

(a) (6 points)
$$
\int (\sqrt{x} - x^{\frac{3}{2}} - \frac{4}{x^2}) dx
$$

$$
\int (\sqrt{x} - x^{\frac{3}{2}} - \frac{4}{x^2}) dx = \int (x^{\frac{1}{2}} - x^{\frac{3}{2}} - 4x^{-\frac{3}{2}}) dx
$$

$$
= \frac{x^{\frac{3}{2}} - x^{\frac{5}{2}} - \frac{4x^{-1}}{-1}}{5/2} - \frac{4x^{-1}}{-1} + C = \frac{2}{3}x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} + 4x^{-1} + C
$$

(b) (6 points)
$$
\int_0^{\pi} (\sin x)(\cos x + 2)^3 dx
$$

\n $u = \cos x + 2 \Rightarrow du = -\sin x dx \Rightarrow dx = \frac{du}{-\sin x}$
\n $x = 0 \Rightarrow u = 1 + 2 = 3, \quad x = \pi \Rightarrow u = -1 + 2 = 1$
\n $\int_3^1 \sin x \, u^3 \frac{du}{-\sin x} = -\int_3^1 u^3 du = \frac{-u^4}{4} \Big|_3^1 = \frac{-1}{4} - \frac{-81}{4} = \frac{-1 + 81}{4} = \frac{80}{4} = 20$

(c) (6 points)
$$
\int \frac{x}{\sqrt{x^2 + 1}} dx
$$

\n $u = x^2 + 1 \Rightarrow du = 2x dx \Rightarrow dx = \frac{du}{2x}$
\n $\int \frac{dx}{\sqrt{u}} \frac{du}{2x} = \frac{1}{2} \int u^{7/2} du = \frac{1}{2} \frac{u^{7/2}}{1/2} + C = u^{7/2} + C = \sqrt{x^2 + 1} + C$

- 12. A ball is thrown upwards from a height of 20 meters, at a speed of $15m/s$. The gravity of the earth causes the ball to accelerate **downwards** at a rate of $10m/s^2$.
	- (a) (4 points) Write a function f that describes the height of the ball at time t .

$$
S(0)=20
$$

\n
$$
V(0)=15
$$

\n
$$
Q(t)=-10
$$

\n
$$
V(t)=\int a(t)dt = -10t + C
$$

\n
$$
V(0)=15 \Rightarrow C=15 \Rightarrow V(t)=10t+15
$$

\n
$$
S(t)=\int V(t)dt = \frac{-10t^2}{2} + 15t + D = -5t^2 + 15t + D
$$

\n
$$
S(0)=20 \Rightarrow D=20 \Rightarrow \boxed{S(t)=-5t^2 + 15t + 20}
$$

(b) (2 points) When will the ball reach its highest point?

when v(t)=0
-10t+15=0 = 10t=15 = 5 t =
$$
\frac{15}{10} = \frac{3}{2}
$$
 sec

(c) (2 points) When will the ball hit the ground?

when
$$
St^2-0
$$

- $St^2+15t+20=0$ = $t^2-3t-4=0$ = $(t-4)(t+1)=0$ = $t=4,-1$
so [4 sec]

13. (a) (2 points) Sketch the region in the plane bounded by the lines $x = 0, x = 4, y = x$, and

(b) (8 points) Calculate the area of the region you sketched in the previous part.

$$
A = \int_{0}^{2} ((6-x^{2})-x) dx + \int_{2}^{4} (x-(6-x^{2})) dx
$$

\n
$$
= \int_{0}^{2} (6-x^{2}-x) dx + \int_{2}^{4} (x-6+x^{2}) dx
$$

\n
$$
= \left[\left(6x - \frac{x^{3}}{3} - \frac{x^{2}}{2} \right) \right]_{0}^{2} + \left(\frac{x^{2}}{2} - 6x + \frac{x^{3}}{3} \right) \Big|_{2}^{4}
$$

\n
$$
= \left[\left[\left(6(2) - \frac{(2)^{3}}{3} - \frac{(2)^{2}}{2} \right) - \left(6(0) - \frac{(0)^{3}}{3} - \frac{(0)^{2}}{2} \right) \right] + \left[\left(\frac{(4)^{2}}{2} - 6(4) + \frac{(4)^{3}}{3} \right) - \left(\frac{(2)^{2}}{2} - 6(2) + \frac{(2)^{3}}{3} \right) \right] \Big|
$$

- 14. Let R be the region bounded by the graphs $y = x^2$ and $y = 9x$.
	- (a) (5 points) The region R is rotated about the y-axis. Set up, but **do not evaluate** an integral describing the volume of the resulting shape. You may use any method you like.

(b) (5 points) The region R is rotated about the x-axis. Set up, but **do not evaluate** an integral describing the volume of the resulting shape. You may use any method you like.

