$Midterm \ 3-Math \ 241$

Friday, November 16, 2018

This is a closed-book exam. No calculators allowed. Justify your answers to obtain full credit (and partial credit, too). You have 50 minutes. This exam consists of 5 questions. Please verify that you have all pages.

Name:_____

ID#:_____

(this page intentionally left blank)

1. (25 points) Find the following integrals:

(a)
$$\int_{0}^{4} 2(\sqrt{t} - t) dt$$

(b)
$$\int \frac{1 + 2t^{3}}{t^{3}} dt$$

(c)
$$\int \tan^{4} x \sec^{2} x dx$$

(d)
$$\int_{0}^{\pi} 2 \sin x \cos^{2} x$$

(e)
$$\int \frac{x}{(x^{2} + 2)^{3}}$$

3

2. (15 points) Use mid-points to approximate the area above the x-axis and under $x^2 + 6$ from x = 0 to x = 6 using 3 rectangles.

3. (20 points) Find the volume of the solid that lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross-sections perpendicular to the x-axis are squares whose side runs from the curve $y = \sqrt{1-x^2}$ to $y = -\sqrt{1-x^2}$. (see last page for picture if needed)

4. (15 points) A ball is thrown from a cliff that is 6 feet from the ground (s(0) = 6) with initial velocity 100ft/sec (v(0) = 100). If the acceleration due to gravity is -32 ft/sec² (a(t) = -32), find the equation s(t) for the position of the ball at time t.

5. (25 points) Set up but do not evaluate the integral(s) needed to find the area between the curves $y = 2x^2$ and y = 6x from x = -2 to x = 5

Final Score

	Score	Out of
Question 1		25
Question 2		15
Question 3		20
Question 4		15
Question 5		25
Total		100

