Math 241 Midterm 1 Review Problems

These problems are intended to help you prepare for the test. Test problems will be similar to, but not the same as, the problems below. *This list of problems is not all inclusive; it does not represent every possible type of problem.* It is suggested that you review lectures, classwork, quizzes, and homework problems.

(1) Calculate the following limits.

(a)	$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$	(k)	$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$
(b)	$\lim_{x \to 2} \frac{\sqrt{x^2 + 12} - 4}{x - 2}$	(l)	$\lim_{x \to -3} \sqrt{x-5}$
(c)	$\lim_{x \to \infty} \frac{2\sqrt{x} + x^{-1}}{3x - 7}$	(m)	$\lim_{x \to \infty} \frac{2x^3 - 4x^2 + 5x}{17x^2 + 1}$
(d)	$\lim_{x \to \infty} \frac{7x^3}{x^3 - 3x^2 + 6x}$	(n)	$\lim_{x \to -\infty} \frac{3x^2 + 4}{x + 7}$
(e)	$\lim_{x \to 0^{-}} \frac{x^2}{2} - \frac{1}{x}$	(o)	$\lim_{t \to 2^-} \frac{t+2}{t-2}$
(f)	$\lim_{x \to 3} 4x^3$	(p)	$\lim_{x \to 0} \frac{\sin x}{3x}$
(g)	$\lim_{x \to 0} \frac{1}{x^3 - 1} + 1$	(q)	$\lim_{x \to \infty} \frac{\sqrt{x} + 3x^{-2}}{4 - 2x}$
(h)	$\lim_{x \to 1} \frac{3x - 4}{x^2 + x + 1}$	()	1;
(i)	$\lim_{x \to -1} \frac{x^2 + x - 2}{x^3 + 1}$	(r)	$\lim_{x \to 0} x \cos\left(\frac{-}{x}\right)$
(j)	$\lim_{x \to -1^{-}} \frac{ x+1 }{x+1}$	(s)	$\lim_{x \to \infty} \frac{\sin x}{x}$

(2) Describe on which intervals the following functions are continuous (show your work):

(a)
$$y = \frac{\sin x}{x-2}$$

(b) $f(x) = \begin{cases} 3-x, & x < 2\\ \frac{x}{2}+1, & 2 \le x < 4\\ 3, & x \ge 4 \end{cases}$
(c) $f(x) = \begin{cases} 1-x^2 & x < -1\\ 1+x & -1 \le x \le 1\\ -3 & x > 1 \end{cases}$

- (3) Show that the equation $x^3 15x + 1 = 0$ has three solutions in the interval [-4, 4]
- (4) Use the definition of the derivative (limit definition) to find the derivatives of the following:
 - (a) $f(x) = \sqrt{x}$
 - (b) $f(x) = x^2 x$
 - (c) $f(x) = \frac{1}{x}$
- (5) Consider the function $f(x) = 5 x^2$.
 - (a) Find the equation for the secant line to the graph of f(x) that passes through the points (1,4) and (2,1).
 - (b) Find f'(x) using the definition of a derivative.
 - (c) Find the equation for the tangent line to the graph of f(x) at the point (1,4).
 - (d) Find the equation for the tangent line to the graph of f(x) at the point (2,1).
- (6) A particle is moving along the x-axis. Its position at time t is given by the function $s(t) = -2t^2 + 5t 2$.
 - (a) Find the particle's average velocity v_{av} between t = 1 and t = 4.
 - (b) Find the particle's instantaneous velocity at t = 1.