Math 241 Midterm 3 Review Problems

These problems are intended to help you prepare for the test. Test problems will be similar to, but not the same as, the problems below. *This list of problems is not all inclusive; it does not represent every possible type of problem.* It is suggested that you review lectures, classwork, quizzes, and homework problems.

(1) Evaluate the following integrals

(a)
$$\int \tan x \sec^2 x \, dx$$

(b) $\int \frac{x}{\sqrt{4x^2 + 9}} \, dx$
(c) $\int \sec^2(5x) \, dx$
(d) $\int x(2x+1)^5 \, dx$
(e) $\int_0^2 x \sqrt{x^2 + 1} \, dx$
(f) $\int_0^{\sqrt{\pi/2}} x \sin x^2 \, dx$
(g) $\int \left(\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}\right) \, dx$
(h) $\int x^{-3}(x+1) \, dx$
(i) $\int_0^{\pi/3} 2 \sec^2 x \, dx$
(j) $\int \frac{1}{\sqrt{x}(1+\sqrt{x})^2} \, dx$
(k) $\int \frac{\sin(2t+1)}{\cos^2(2t+1)} \, dt$
(l) $\int_{-1}^{1} t^3(1+t^4)^3 \, dt$
(m) $\int_0^{\pi/6} (1-\cos 3t) \sin 3t \, dt$

(2) Solve the initial value problem

(a)
$$\frac{dy}{dx} = \frac{1}{2\sqrt{x}}, y(4) = 0$$

(b) $\frac{ds}{dt} = 12t(3t^2 - 1)^3, s(1) = 3$

(3) The acceleration of an object is given by $\frac{3t}{8}$ find the position given that v(4) = 3 and s(4) = 4.

- (4) Using 4 rectangles of equal length and the following rules find Riemann sums estimates for $f(x) = -x^2 + 16$ from x = -2 to x = 2.
 - (a) Left-hand endpoints
 - (b) Right-hand endpoints
 - (c) Midpoints

(5) Find
$$\frac{d}{dx} \int_0^{\sqrt{x}} \cos t \, dt$$

- (a) by evaluating the integral and differentiating the result.
- (b) by differentiating the integral directly
- (6) Find the total area between $y = x\sqrt{4-x^2}$ and y = 0

- (7) Set up but do not evaluate the integral(s) needed to find the area between $y = x^2 4$ and $y = -x^2 2x$ from x = -3 to x = 1.
- (8) Set up but to not evaluate the integral (s) needed to find the area between $y = x^4 - 4x^2 + 4$ and $y = x^2$
- (9) Find the volume of the solid that lies between planes perpendicular to the x-axis at x = 0 and x = 4. The cross-sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals run from the parabola $y = -\sqrt{x}$ to the parabola $y = \sqrt{x}$
- (10) Find the volume of the solid that lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross-sections perpendicular to the x-axis are circular disks whose diameters run from the parabola $y = x^2$ to the parabola $y = 2 x^2$.
- (11) Find the volumes of the solids generated by revolving the regions bounded by the lines and curves about the x-axis: $y = x^2$, y = 0, x = 2
- (12) Find the volume of the solid generated by revolving the region the region bounded by $y = \sqrt{x}$ and the lines y = 2 and x = 0 about
 - (a) the *x*-axis
 - (b) the *y*-axis
 - (c) the line y = 2
 - (d) the line x = 4