Math 241, Spring 2017, Final Exam

Name and section number:

Instructor name:

Question | Points | Score

Solions T
\\/U\ en 2 8

\O D ] 3 16

7 .
5 6

6 7

7 8

8 10

9 12

10 15

11 4

12 6

13 8

14 8
Total: 130

¢ You may not use notes or electronic devices on the test.
e Please ask if anything seems confusing or ambiguous.

¢ You must show all your work.

¢ You do not need to simplify your answers.

Good luck!




1. Caleulate the following limits. Do not use L'Hospital’s rule. If the limit is positive or negative
infinlty, say which.
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2. (a) (6 points) Using the definition of the derivative as a limit, compute f/(0) if f(z) =
(Warning: you will get no credit if you use the rules of differentiation).

ey= Qe RO _ ) - g )
A

(b) (2 points) The limit lim VO+h-3

h—0
point a. What is ¢ and what is a?
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represents the derivative of some function g at some
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3. Differentiate the following functions. You do not need to simplify your answers.
(a) (4 points) f(z) = % —22% + /z + Tn? I
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(b) (4 points) g(z) =
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(c) (4 points) h(z) = (1 + sin(72?))*
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(d) (4 points) R(z) = f (14 t3)5dt
0
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4. (6 points) Use linear approximation and the fact that 100 = 0.01 to find an approximation to
1

102° ]
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5. (6 points) Find an equation for the tangent line to the graph of 2%+ 2%y + y* = 3 at the point
(1,1).

:Ibn]?l‘od_ cl?f%e«@dl ~sten. Eq d | sdea
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Tongpt e y-1 = —3(x—1).
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6. Consider the equation 1 +z = z° .

(a) (5 points) Explain why the equation has a solution in the interval [1, 2. State the theorems
you use in your explanation.

S £ = X=x~1.

A4 arTiuneuL. e O,z
Fy=1-t-t="1

=827 = 2.

Swee H0> <0 <T(D,

by tha Trhermedrate \Jalue Thesomn,

(=0 fuy somme 1 4C< =
So @)@:—-yf-l lan a Sofﬂb?cv\/ ‘Hl’m 5

(b) (2 points) Explain why the equation can't have two solutions in the interval [1,2]. State
the theorems you use in your explanation.

I‘F 'F(C)‘—‘—‘F(Cz)lo 'Qov’ care | £C & C S 'Z/
Then becauae L 5o vl e (1,20,

Tl £7(d)=0 Lor some € <d <C2
\9& %—QQOL W .
gt Flo=3x—1 >3 =S

‘For“ x =1
Thee $O0F OFfor att 14 x4 2,

So £/A)=0 5 ndl possible for c<d<ce.
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7. (8 points) A person flies a kite at a height of 300 feet. The wind carrying the kite moves it
away from the person horizontally at a speed of 25 feet per second. What is the rate of change
of the length of the kite string (that is - the distance from the person to the kite), when the

kite is 500 feet away from the person? A —
unfiv s
X Gvem = 5

dg _ 7
300 Y4 ﬁ- =
g\/alm@)k w‘/‘@ﬂ\e/solvﬁ= LfO‘O

300 500

lug 11
8 e
%;500
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8. (10 points) A rectangular box has a base that is a square. The perimeter of the base plus the
height of the box is equal to 3 feet. What is the largest possible volume for such a box, and
what are its dimensions? Justify your answer.

Conshrond ¥s .
4 4><+‘3:3”>5’3Lb(

X
4l 4 l\/\anvi“t'—?:&V"lWy
> \/ = szé&

\Volume s X ma) ",}_"é‘w

/

. AV =
The volume i \/:Xé}'(’“’)l I
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9. Let f(z) = 325 — 523
(a) (2 points) find the critical points of f d»\ O

’F(X)~\5x( )
IEXH(X =) =
X = O/ lj —| ave crﬁ']cal Tn\wat

(b) (2 points) Classify the critical points of f as local maxima, local minima, or neither.

—P/(X)‘- t+t 0o -- o0 -—- ©° ++

3 = é ; /9
LOOe’fL Sy L.OO‘L

“Q 7 MA X e

(¢) (2 points) Find the intervals where f is increasing.

Increasmé on (—9, 1 and on l:‘/w).
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£00=3x>5%
(d) (2 points) Find the maximal and minimal values of f in [-2,0].
Cgmfapwe evitical ?O"TWES and @ni?wag
2=l FEN==3+5= Zu +— MAX
XZZ  Le2)= 40+ 45==5] 4~ p N
X=0 £()=0

(e) (2 points) Find the intervals where f in concave up.

)= (ox3-30x = 0 Loncave «ff

:O eNn

" P A= 'x:i:v;i" (——\f-i/O> WJ
09 ___ 0o +4 © —- o+t
< f—1 -t - (O/OO)
X AEE o Az

(f) (2 points) Give a rough sketch of the graph of y = f(z).

Page 10




10. Compute each of the following.

(a) (5 points) fﬁ sin(z) cos® ()dx Syb U= (& XX A/X

o 9 C!M::—S?n
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= % ¥-3X |
Vx> ,‘ i
= E‘Jéﬂ.: 3- Gdn = AT
VT <

(c) (5 points) Find the function F(z) given that F/(z) = 2% 4+ 42 + 5 and F(1) =2
Fo)= sx+ tax + Bx +C,
Fo0 X+ 2x+Bx+ O
At x=I
2 = F(1)= z+2+5+C
R S

—

—
—
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Page 11



11. Let f(z) = 22 — 1. Partition the interval [1,4] into 3 equal parts.

(a) (2 points) Calculate a Riemann sum for f using the left endpoint of each interval.

AX:—T—_;;“-'—"—I

R EESER
R,= () 140 r4)Ax=(0+3+DL 7 11

(b) (24points) Is the Riemann sum you calculated in the previous part more or less than

/ (z* — 1)dz? Explain your answer.
1

et o0t digom shovon
jl‘f(xz—oé’?( — area “MA,@\ ‘x‘z".-l Ew,m l%ﬂ( L{
’Ti‘a !Z“IMMM Sumn LA W Case 15 a[ga

'Ha.a lower sum .

12. For each of the following, answer True or False. No further explanation is required.

(a) (2 points) Every differentiable function is also continuous.

Tru
(b) (2 points) The fu._n_c_t‘ion F(z) = ]: ET:;W‘“ is increasing. beﬁw F/O( = |-—_—+xz+)(+
g is olways > 0.

(c) (2 points) If f/(1) =0 and f”(1) = 0 then f cannot achieve a local maximum at 1.

False 0= —(x- D
15 such 2 ex
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13. (8 points) Calculate the area bounded by the graphs of y = z2 — 1 and y = 3z + 3.

\ Selve L itersection r;“jc
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) 2 K= 3-X
‘;n"fwﬂ'ah"“' LA R=B=0
D
14. Consider the region R bounded by the graphs of y =22, y = 3 — 22 and £ 2 0. w=\, %

(2) (4 points) The region R is rotated about the y-axis. Set up, but do not evaluate an
integral describing the volume of the resulting shape. You may use any method you like.

Gt shel B _

t the z-axis. Set up, but do not evaluate an

(b) (4 points) The region R is rotated abou
integral describing the volume of the resulting shape. You may use any method you like.

| = + }5"2% Use vertica Yed‘aﬂglesj AX;-.TVDU%
63‘ WaSl/\eV.S‘
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