Math 241, Spring 2017, Final Exam

Name and section number:

Instructor name:

Soli	utions
by	D. Yuen

Question	Points	Score
1	16	
2	8	
3	16	
4	6	
5	6	eri P
6	7	
7	8	
8	10	
9	12	
10	15	
11	4	
12	6	
13	8	
14	8	
Total:	130	

- You may not use notes or electronic devices on the test.
- Please ask if anything seems confusing or ambiguous.
- You must show all your work.
- You do not need to simplify your answers.
- Good luck!

1. Calculate the following limits. Do not use L'Hospital's rule. If the limit is positive or negative infinity, say which.

(a) (4 points)
$$\lim_{x\to\infty} \frac{7-4x-x^4}{2(x^2-2)^2}$$
.

(a) (4 points)
$$\lim_{x\to\infty} \frac{7-4x-x^4}{2(x^2-2)^2}$$
. Type $\stackrel{\infty}{=}$ Divide by highest power of denominator

$$\lim_{X \to \infty} \frac{7 - 4x - x^4}{2(x^2 - z)(x^2 - z)} = \lim_{X \to \infty}$$

$$\lim_{X \to \infty} \frac{7 - 4x - x^4}{2(x^2 - 2)(x^2 - 2)} = \lim_{X \to \infty} \frac{7}{2(1 - \frac{2}{x^2})(1 - \frac{2}{x^2})} = \frac{0 - 0 - 1}{2(1 - 0)(1 - 0)} = \left[-\frac{1}{2} \right]$$

(b) (4 points)
$$\lim_{x\to 1^+} \frac{x^2-1}{(x-1)^3}$$
. Type $\stackrel{\bigcirc}{\circ}$

$$= \lim_{X\to 1^+} \frac{(X+1)(X-1)}{(X-1)^3} = \lim_{X\to 1^+} \frac{X+1}{(X-1)^2}$$
Type $\stackrel{\bigcirc}{\circ}$

$$= \lim_{X\to 1^+} \frac{(X+1)(X-1)}{(X-1)^3} = \lim_{X\to 1^+} \frac{X+1}{(X-1)^2}$$

(c) (4 points)
$$\lim_{x\to 2} \frac{\sqrt{x+7}-3}{x-2}$$
. $\frac{\sqrt{x+7}+3}{\sqrt{x+7}+3}$ Type $\frac{0}{0}$
= $\lim_{x\to 2} \frac{(x+7)-9}{(x-2)(\sqrt{x+7}+3)} = \lim_{x\to 2} \frac{x-2}{(x-2)(\sqrt{x+7}+3)}$
= $\lim_{x\to 2} \frac{1}{\sqrt{x+7}+3} = \frac{1}{\sqrt{9+3}} = \frac{1}{6}$

$$= \lim_{x \to 0} \frac{\sin 5x}{x(x+1)} \qquad \text{Use } \lim_{x \to 0} \frac{\sin 5x}{5x} = 1$$

$$= \lim_{x \to 0} \frac{5 \cdot \sin 5x}{5x} \cdot \frac{1}{x+1} = 5 \cdot 1 \cdot \frac{1}{0+1} = 5$$

2. (a) (6 points) Using the definition of the derivative as a limit, compute f'(0) if $f(x) = \frac{1}{2x+1}$. (Warning: you will get no credit if you use the rules of differentiation).

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\frac{1}{2h+1} - \frac{1}{1}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{2h+1} - \frac{2h+1}{2h+1}}{\frac{1}{1}} = \lim_{h \to 0} \frac{\frac{-2h}{2h+1} - \frac{1}{1}}{\frac{1}{1}}$$

$$= \lim_{h \to 0} \frac{-2}{2h+1} = \frac{-2}{0+1} = \begin{bmatrix} -2 \end{bmatrix}$$

(b) (2 points) The limit $\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$ represents the derivative of some function g at some point a. What is g and what is a?

$$\lim_{h\to 0} \frac{\sqrt{9+h} - \sqrt{9}}{h} = g'(9) \text{ where } g(x) = \sqrt{x}$$

$$a = 9$$

3. Differentiate the following functions. You do not need to simplify your answers.

(a) (4 points)
$$f(x) = \frac{5}{x^7} - 2x^3 + \sqrt{x} + 7\pi^2$$

 $f(x) = 5x^7 - 2x^3 + x^2 + 7\pi^2$

$$f'(x) = -35x^{8} - 6x^{2} + \frac{1}{2}x^{\frac{1}{2}} + 0$$

(b) (4 points)
$$g(x) = \frac{x^2(x^3+1)}{2-x^5} = \frac{x^5+x^2}{2-x^5}$$

$$g'(x) = \frac{(5x^4+2x)(2-x^5)-(x^5+x^2)(-5x^4)}{(2-x^5)^2}$$

(c) (4 points)
$$h(x) = (1 + \sin(7x^2))^3$$

$$h'(x) = 3(1+\sin(7x^2))^2 (0+\cos(7x^2)\cdot 14\times)$$

(d) (4 points)
$$R(x) = \int_0^{3x} (1+t^3)^5 dt$$

$$R'(x) = (1 + (3x)^3)^5 \cdot 3$$

4. (6 points) Use linear approximation and the fact that
$$\frac{1}{100} = 0.01$$
 to find an approximation to Set $f(x) = \frac{1}{x}$

Linear approximat at $a = 100$ yields

Linear approximat at $f'(x) = -\frac{1}{x^2}$
 $f'(100) = -\frac{1}{1000} = -0.01$

$$L(x) = f(100) + f'(100)(x-100)$$

$$= .01 + (-.0001)(x-100).$$

Then
$$\frac{1}{102} \approx L(102) = .01 + (-.0001)(2)$$

= .01 - .0002 = .0098

5. (6 points) Find an equation for the tangent line to the graph of $x^4 + x^2y + y^3 = 3$ at the point a both sides

Implicat differentiation.
$$\frac{1}{4} + 3y^{2} = 0$$
.

$$(x^{2} + 3y^{2}) = -4x^{3} - \frac{2}{4}x^{4}$$

Tangent line:
$$y-1=-\frac{3}{2}(x-1)$$
.

- 6. Consider the equation $1 + x = x^3$.
 - (a) (5 points) Explain why the equation has a solution in the interval [1, 2]. State the theorems you use in your explanation.

Set
$$f(x) = x^3 - x - 1$$
.

fis continuous on [1,2].

$$f(2) = 8-2-1 = 5$$

Since f(1) < 0 < f(2),

by the Intermediate Value Theorem,

So $X^3 = X + 1$ has a solution, thus c.

(b) (2 points) Explain why the equation can't have two solutions in the interval [1, 2]. State the theorems you use in your and an interval [1, 2].

the theorems you use in your explanation.

If f(c) = f(c2) = 0 for some 1 < C < C2 < 2,

then because f is differentiable on [1,2],

then f(d)=0 for some c<d<c2

by Rollas Theorem.

But $f(x) = 3x^2 - 1 \ge 3(1)^2 - 1 = 2$ for x>1,

Thus f'(x) \$ O for all 1 \x \x \z.

So f(d)=0 is not possible for c<d<(2.

So there cannot be two solutions in [1,2]

7. (8 points) A person flies a kite at a height of 300 feet. The wind carrying the kite moves it away from the person horizontally at a speed of 25 feet per second. What is the rate of change of the length of the kite string (that is - the distance from the person to the kite), when the kite is 500 feet away from the person?

Fiven
$$\frac{dx}{dt} = 25\%$$
 units ft,s $\frac{dy}{dt} = ?$ Evaluate when solve=400

$$x^2 + 300^2 = y^2$$

$$2 \times 2 \times 10^{-2} = 2 \times 10^{-2$$

$$2(400)(25)$$
 $ft/s = 44$

8. (10 points) A rectangular box has a base that is a square. The perimeter of the base plus the height of the box is equal to 3 feet. What is the largest possible volume for such a box, and what are its dimensions? Justify your answer.

Constraint is

$$4x + y = 3 \Rightarrow y = 3 - 4x$$

 $4x + y = 3 \Rightarrow y = 3 - 4x$
Maximize Volume
 $\sqrt{= x^2y}$
 $\sqrt{= x^2y}$
 $\sqrt{= x^2y}$
Domain $0 \le x \le \frac{3}{4}$

$$V = \chi^{2}(3-4x)$$
 Domain $0 < x < 6$
 $V = 3x^{2}-4x^{3}$

$$\frac{dV}{dx} = 6x - 12x^{2} = 60$$

$$6x(1 - 2x) = 0$$

$$x = \frac{1}{2}$$

Volume is maximal when $X = \frac{1}{2}$, $y = 3 - 4(\frac{1}{2}) = 1$. The volume is $V = x^2y = (\frac{1}{2})^21 = \frac{1}{4}$.

- 9. Let $f(x) = 3x^5 5x^3$.
 - (a) (2 points) find the critical points of f. $f'(x) = 15 x^{4} - 15 x^{2} \leq 0$ $15 x^{2}(x^{2} - 1) = 0$ x = 0, 1, -1 are critical points
 - (b) (2 points) Classify the critical points of f as local maxima, local minima, or neither.

(c) (2 points) Find the intervals where f is increasing.

Increasing on $(-\infty, 1]$ and on $[1, \infty)$.

$$f(x) = 3x^5 - 5x^3$$

(e) (2 points) Find the intervals where f in concave up.

$$f''(x) = 60 \times 3 - 30 \times = 0$$
 Concave up
 $30 \times (2 \times^2 - 1) = 0$ on
 $\times = 0 \times = \pm \sqrt{2}$ $(-\frac{1}{\sqrt{2}}, 0)$ and
 $(-\frac{1}{\sqrt{2}}, 0) \times (0, \infty)$

(f) (2 points) Give a rough sketch of the graph of y = f(x).

10. Compute each of the following.

(a) (5 points)
$$\int_{0}^{\frac{\pi}{2}} \sin(x) \cos^{5}(x) dx$$

$$= \int_{1}^{2} u^{5} \left(-\frac{1}{4}u^{6}\right)^{3}$$

$$= -\frac{1}{6}u^{6}|_{1}^{2}$$

$$= -0 + \frac{1}{6} = \boxed{\frac{1}{6}}$$

Sub
$$u = cex$$

 $du = -sinx dx$
 $x = \frac{\pi}{2} \Rightarrow u = cex \frac{\pi}{2} = 0$
 $x = 0 \Rightarrow u = cex 0 = 1$

(b) (5 points)
$$\int \frac{x^2 - 1}{\sqrt{(x^3 - 3x)}} dx$$
 $U = X^3 - 3X$ $du = (3x^2 - 3) dx$

$$= \frac{1}{3} \int \frac{3(x^2 - 1) dx}{\sqrt{x^3 - 3x}} dx = 3(x^2 - 1) dx$$

$$= \frac{1}{3} \int \frac{du}{\sqrt{u}} = \frac{1}{3} \int \sqrt{u^2} du = \frac{1}{3} \cdot 2 u^{\frac{1}{2}} + C$$

$$= \frac{2}{3} (x^3 - 3x)^{\frac{1}{2}} + C$$

$$= \frac{2}{3} (x^3 - 3x)^{\frac{1}{2}} + C$$

(c) (5 points) Find the function F(x) given that $F'(x) = x^2 + 4x + 5$ and F(1) = 2.

$$F(x) = \frac{1}{3}x^{3} + 4 \cdot \frac{1}{2}x^{2} + 5x + C$$

$$F(x) = \frac{1}{3}x^{3} + 2x^{2} + 5x + C$$
At $x = 1$:
$$2 = F(1) = \frac{1}{3} + 2 + 5 + C$$

$$-\frac{1}{3} - \frac{1}{3} = C$$

$$F(x) = \frac{1}{3}x^{3} + 2x^{2} + 5x - \frac{16}{3}$$

$$F(x) = \frac{1}{3}x^{3} + 2x^{2} + 5x - \frac{16}{3}$$

- 11. Let $f(x) = x^2 1$. Partition the interval [1, 4] into 3 equal parts.
 - (a) (2 points) Calculate a Riemann sum for f using the left endpoint of each interval.

$$\Delta X = \frac{4-1}{3} = 1$$

$$R_3 = (f(1) + f(2) + f(3)) \Delta x = (0 + 3 + 8) 1 = 11$$

(b) (2 points) Is the Riemann sum you calculated in the previous part more or less than $\int_{1}^{4} (x^2 - 1) dx$? Explain your answer.

Less, as the diagram shows.

Sit(x^2-1)dx = area under x^2-1 between 1 and 4

The Riemann sum in this case is also

the lower sum.

- 12. For each of the following, answer True or False. No further explanation is required.
 - (a) (2 points) Every differentiable function is also continuous.

True

(b) (2 points) The function
$$F(x) = \int_0^x \frac{1}{1+t^2+t^4} dt$$
 is increasing. because $F(x) = \frac{1}{1+x^2+x^4}$.

I solveys > 0 .

(c) (2 points) If f'(1) = 0 and f''(1) = 0 then f cannot achieve a local maximum at 1.

False

$$f(x) = -(x-1)^4$$

is such an example

13. (8 points) Calculate the area bounded by the graphs of $y = x^2 - 1$ and y = 3x + 3.

Solve for intersection points

$$x^{2}-1 = 3x + 3$$

$$x^{2}-3x-4 = 0$$

$$(x-4)(x+1)$$

$$x = 4, -1$$

$$A = \int_{-1}^{4} (3x+3-(x^{2}-1)) dx$$

$$= \int_{-1}^{4} (3x+4-x^{2}) dx$$

$$= \underbrace{\frac{3}{2}}_{1}^{4} (3x+4-x^{2}) dx$$

$$= \underbrace{\frac{3}{2}}_{1}^{4} + 4x - \underbrace{\frac{1}{3}}_{1}^{4} x^{3} \Big|_{-1}^{4}$$

$$= \underbrace{\frac{3}{2}}_{1}^{4} (16) + 16 - \underbrace{\frac{64}{3}}_{3} - \left(\underbrace{\frac{3}{2}}_{1} - 4 + \underbrace{\frac{1}{3}}_{3}\right)$$

intersection: $2 \times = 3 - x^2$ (x+3)(x-1) = 0(a) (4 points) The region R is rotated about the second of x = 2x, $y = 3 - x^2$ and $x \ge 0$. x = 1, x = 2

integral describing the volume of the resulting shape. You may use any method you like.

(b) (4 points) The region R is rotated about the x-axis. Set up, but do not evaluate an integral describing the volume of the resulting shape. You may use any method you like.

Use vertical rectangles, dx-problem Get washers. (3-x²)²-(2x))dx
outer inner
radius