Sections 3.5 Activity Sheet

Group 1:

Activity 1:

- Step 1: Use a graphing utility (I would recommend Desmos) to graph $y = \sqrt{x}$.
- Step 2: Graph $y = \sqrt{x} + 2$, $y = \sqrt{x} + 3$, $y = \sqrt{x} 4$, and $y = \sqrt{x} 7$. How does the graph change? Be as specific as you can be.
- Step 3: What rule can you make about how $y = \sqrt{x} \pm a$ looks compared to $y = \sqrt{x}$?

Activity 2:

- Step 1: Use a graphing utility (I would recommend Desmos) to graph y = |x|.
- Step 2: Graph y = |x 2|, y = |x + 3|, y = |x 4|, and y = |x 7|. How does the graph change? Be as specific as you can be.
- Step 3: What rule can you make about how $y = |x \pm a|$ looks compared to y = |x|?

Conclusion #1:

Now that you've done those two activities, what rule can you make about how $y = f(x) \pm a$ looks compared to y = f(x)? What rule can you make about $y = f(x \pm a)$? Be prepared to share with the rest of the class

Activity 3:

- Step 1: Use a graphing utility (I would recommend Desmos) to graph $y = \sqrt{x}$.
- Step 2: Graph $y = -\sqrt{x}$, $y = \sqrt{-x}$. How does the graph change? Be as specific as you can be.
- Step 3: Now use a graphing utility to graph y = |x|.
- Step 4: Graph y = -|x|, y = |-x|. How does the graph change? Be as specific as you can be.

Conclusion #2:

What rule can you make about how y = -f(x) looks compared to y = f(x)? What rule can you make about y = f(-x)? Be prepared to share with the rest of the class

Group 2:

Activity 1:

- Step 1: Use a graphing utility (I would recommend Desmos) to graph $y = \sqrt{x}$.
- Step 2: Graph $y = 2\sqrt{x}$, $y = 3\sqrt{x}$, and $y = \frac{4}{3}\sqrt{x}$. How does the graph change? Be as specific as you can be.
- Step 3: Now graph $y = \frac{1}{2}\sqrt{x}$, $y = \frac{1}{3}\sqrt{x}$, and $y = \frac{3}{4}\sqrt{x}$. How does the graph change? Be as specific as you can be.

Activity 2:

- Step 1: Use a graphing utility (I would recommend Desmos) to graph y = |x|.
- Step 2: Graph y = 2|x|, y = 3|x|, and $y = \frac{4}{3}|x|$. How does the graph change? Be as specific as you can be.
- Step 3: Now graph $y = \frac{1}{2}|x|$, $y = \frac{1}{3}|x|$, and $y = \frac{3}{4}|x|$. How does the graph change? Be as specific as you can be.

Conclusion:

Now that you've done those two activities, what rule can you make about how y = af(x) looks compared to y = f(x)? Be prepared to share with the rest of the class

Note: Remember that things like $\frac{1}{2}x$ can also be written like $\frac{x}{2}$. Similarly $\frac{3}{4}x$ can also be written as $\frac{3x}{4}$

Group 3:

Activity 1:

- Step 1: Use a graphing utility (I would recommend Desmos) to graph $y = \sqrt{x}$.
- Step 2: Graph $y = \sqrt{2x}$, $y = \sqrt{3x}$, and $y = \sqrt{\frac{4}{3}x}$. How does the graph change? Be as specific as you can be.
- Step 3: Now graph $y = \sqrt{\frac{1}{2}x}$, $y = \sqrt{\frac{1}{3}x}$, and $y = \sqrt{\frac{3}{4}x}$. How does the graph change? Be as specific as you can be.

Activity 2:

- Step 1: Use a graphing utility (I would recommend Desmos) to graph y = |x|.
- Step 2: Graph y = |2x|, y = |3x|, and $y = \left|\frac{4}{3}x\right|$. How does the graph change? Be as specific as you can be.
- Step 3: Now graph $y = \left|\frac{1}{2}x\right|$, $y = \left|\frac{1}{3}x\right|$, and $y = \left|\frac{3}{4}x\right|$. How does the graph change? Be as specific as you can be.

Conclusion:

Now that you've done those two activities, what rule can you make about how y = f(ax) looks compared to y = f(x)? Be prepared to share with the rest of the class

Note: Remember that things like $\frac{1}{2}x$ can also be written like $\frac{x}{2}$. Similarly $\frac{3}{4}x$ can also be written as $\frac{3x}{4}$