Name:

Complete as many of the following problems as you can with your group. You do not have to go in order. Each group will be given a specific problem that they must complete and present to either Professor MG or to Stefanie before they leave.

- (1) Solve the following inequality. Write your answer in interval notation: $-x^2 + 6x + 7 \ge 0$
- (2) Solve the following inequality. Write your answer in interval notation: $2x^2 7x + 3 > 0$
- (3) Solve the following inequality. Write your answer in interval notation: $9 x^2 > 0$
- (4) Solve the following inequality. Write your answer in interval notation: $x^2 + 2x 15 < 0$
- (5) Solve the following inequality. Write your answer in interval notation: $17x + 5 \ge -6x^2$
- (6) Solve the following inequality. Write your answer in interval notation: $5x^2 + 2x \le 0$
- (7) Solve the following inequality. Write your answer in interval notation: $x^2 + 4x + 3 \le 0$
- (8) Solve the following inequality. Write your answer in interval notation: $x^2 + 7x + 10 > 0$
- (9) Solve the following inequality. Write your answer in interval notation: $5x^2 27x \le -10$
- (10) Solve the following inequality. Write your answer in interval notation: $2x^2 + 4x + 4 > -5x$

Key:

(1) [-1,7]	(5) $\left(-\infty, -\frac{5}{2}\right] \cup \left(-\frac{1}{3}, \infty\right)$	(8) $(-\infty, -5) \cup (-2, \infty)$
$(2) \left(-\infty, \frac{1}{2}\right) \cup (3, \infty)$ $(3) \left(-3, 3\right)$	(6) $\left[-\frac{2}{5},0\right]$	$(9) \left[\frac{2}{5}, 5\right]$
(4) $(-5,3)$	$(7) \ [-3, -1]$	(10) $(-\infty, -4) \cup \left(-\frac{1}{2}, \infty\right)$