ACMAT117 Fall 2024

Professor Manguba-Glover

Sections 3.3 Classwork (CW 9)

Name:

Complete as many of the following problems as you can with your group. You do not have to go in order. Each group will be given a specific problem that they must complete and present to either Professor MG or to Stefanie before they leave.

(1) Simplify and write your final answer in standard form:

(a)
$$\sqrt{-50} - \sqrt{-8}$$

(c)
$$\sqrt{-8} - \sqrt{-18} + \sqrt{-32}$$

(b)
$$\sqrt{-3}(\sqrt{-75} - \sqrt{3})$$

(d)
$$\sqrt{(3+\sqrt{-16})(3-\sqrt{-16})}$$

(2) Perform the operation and write your final answer in standard form:

(a)
$$(6-5i)+(14-3i)-(7+i)$$

(c)
$$i+3+(i-3)+(3i-1)$$

(b)
$$(19+i)+7i-(3-4i)+2$$

(d)
$$2-3i+(4i-5i)+6i-(7i-2)$$

(3) Perform the operation and write your final answer in standard form:

(a)
$$7i(-4-3i)$$

(b)
$$i(4+i)(1+i)$$

(a)
$$7i(-4-3i)$$
 (b) $i(4+i)(1+i)$ (c) $(2+3i)(7-2i)$ (d) $(3-8i)(2+7i)$

(d)
$$(3-8i)(2+7i)$$

(4) Perform the operation and write your final answer in standard form:

(a)
$$\frac{4-3i}{5+5i}$$

(b)
$$\frac{17-8i}{-5i}$$

(5) Perform the operation and write your final answer in standard form:

(a)
$$i^{13}$$

(b)
$$-i^{17}$$

(c)
$$(1+i)^{\frac{1}{2}}$$

(b)
$$-i^{17}$$
 (c) $(1+i)^3$ (d) $(2i)^5 + i^9$

(6) Find the discriminant to determine what kind of solutions the quadratic equation has, then solve the equation.

(a)
$$x^2 + 11x + 30 = 0$$

(c)
$$x^2 - 8x + 52 = 0$$

(b)
$$2x^2 - 3x - 1 = 0$$

(d)
$$x^2 - 10x + 34 = 0$$

Key:

(1) (a)
$$3i\sqrt{2}$$

(c)
$$-1 + 5i$$

(4) (a)
$$\frac{1}{10} - \frac{7}{10}i$$

(b) $\frac{8}{5} + \frac{17}{5}i$
(5) (a) i

(6) (a)
$$-5, -6$$
 (b) $\frac{3\pm\sqrt{17}}{4}$

(b)
$$-15 - 3i$$

(c) $3i\sqrt{2}$

(d)
$$-5i + 4$$

(3) (a) $21 - 28i$

(b)
$$\frac{3\pm\sqrt{1}}{1}$$

$$(5)$$
 (a)

(b)
$$\frac{3\pm\sqrt{1}}{4}$$

$$(d)$$
 5

(b)
$$-5 + 3i$$

(b)
$$-i$$

(2) (a)
$$13 - 9i$$

(c)
$$20 + 17i$$

(c)
$$-2 + 2i$$

(c)
$$4 \pm 6i$$

(b)
$$18 + 12i$$

(d)
$$62 + 5i$$

(d)
$$5 \pm 3i$$