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Chapter 1

Introduction and Motivation

In this paper we will discuss several properties of binary quadratic forms along with several ways of
transforming these forms using both matrix multiplication and a geometric interpretation. Before
we define these terms formally, let’s first describe some applications.

Binary quadratic forms were largely used in the development of algebraic and elementary num-
ber theory. The most famous application of them can be found in Fermat’s Two-Squares Theorem
which states that every positive prime p ≡ 1 (mod 4) can be written as p = x2 + y2. They have also
been applied to studying and solving Pell’s equation, x2−my2 = 1, and can be found in Gauss’ proof
of the quadratic reciprocity law. Now lets formally define some of the basic terminology needed to
study these forms.

A form of degree n over the ring of integers Z in k variables is a linear combination of terms
xe11 ⋯x

ek
k such that e1 + ⋯ + ek = n. A binary quadratic form (over Z) is a quadratic form in two

variables, usually denoted

Q(x, y) = Ax2 +Bxy +Cy2 or Q = (A,B,C)

where the coefficients A, B, and C are integers. The discriminant of Q is the integer ∆(Q) =
B2 − 4AC. From this definition it is clear that ∆ ≡ 0,1 (mod 4) and as such can be written as
∆ = −4k or ∆ = 1 − 4k for k ∈ Z.

We say that an integer n is represented by Q if there exists two integers x and y such that
Q(x, y) = n. If x and y are coprime, we say that n is represented primitively. Similarly, we say that
a form (A,B,C) is primitive if gcd(A,B,C) = 1. To study integers represented by (dA, dB, dC) we
can multiply those represented by the form (A,B,C) by the common divisor d. As such, we will
only consider primitive forms. A discriminant ∆ is called fundamental if every form of discriminant
∆ is primitive.

Proposition 1 (Lemma 1.8 of Lemmermeyer). A discriminant ∆ is fundamental if and only if

∆ =
⎧⎪⎪⎨⎪⎪⎩

4k, k ≡ 2,3 (mod 4)

k, k ≡ 1 (mod 4)

for some squarefree integer k.

Proof. We break the proof into two cases: ∆ ≡ 0 (mod 4) and ∆ ≡ 1 (mod 4).
Consider ∆ ≡ 1 (mod 4). Assume ∆ is not fundamental, then there exists a binary form

(A,B,C) such that p∣ A,B,C for some prime p. This implies p2∣ ∆ and hence ∆ is not squarefree.
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Now assume ∆ ≡ 1 (mod 4) is not squarefree. Then ∆ = dp2 for some prime p. Since ∆ ≡
1 (mod 4), p must be odd with p2 ≡ 1 (mod 4) and hence d ≡ 1 (mod 4). We now have that
Q = (p, p, p(1−d

4 )) is a non-primitive quadratic form of discriminant ∆ and conclude that ∆ is not
fundamental. This proves the theorem for ∆ ≡ 1 (mod 4).

If ∆ ≡ 0 (mod 4), let ∆ = 4k and assume k is not squarefree. By assumption we have that there
is a prime p such that p2∣ k. If p is odd with ∆ = dp2 then d ≡ 0 (mod 4) and Q = (p,0,−d4p) has
discriminant ∆, so ∆ is not fundamental. If p = 2 then k ≡ 0 (mod 4). Writing k = 4k′, we have
that Q = (2,0,−2k′) is a quadratic form of discriminant ∆ and hence ∆ is not fundamental. This
shows that if ∆ is fundamental then k is squarefree.

Since k is squarefree we know that k /≡ 0 (mod 4). If k ≡ 1 (mod 4) then Q = (2,2, 1−k
2 ) has

discriminant ∆ so ∆ is not fundamental which is a contradiction.
For the reverse direction, assume ∆ ≡ 0 (mod 4) is not fundamental. Then there exists a

quadratic form Q = (A,B,C) of discriminant ∆ with p∣ A,B,C for some prime p. If p is odd then
p2∣4k implies p2∣ k so k is not squarefree. If p = 2, writing (A,B,C) = (2a,2b,2c) gives k = b2 − 4ac
and hence k ≡ 0,1 (mod 4). If k ≡ 0 (mod 4) then k is not squarefree and if k ≡ 1 (mod 4) then
k /≡ 2,3 (mod 4). This completes the proof.

To each form (A,B,C) we associate two matrices

M(Q) = ( 2A B
B 2C

) and m(Q) = 1

2
M(Q) = ( A B/2

B/2 C
)

The following facts are true about M(Q) and m(Q):

(1) 4Q(x, y) = (x, y)M(Q) ( xy )

(2) Q(x, y) = (x, y)m(Q) ( xy )

(3) ∆(Q) = −detM(Q) = −4 detm(Q)

In studying quadratic forms we may find that two forms that represent the exact same set of
integers and can be transformed into each other through unimodular matrices; these forms are
called equivalent.

Example 1. Consider Q(x, y) = 2x2 + 2xy + y2. Since 2x2 + 2xy + y2 = (x + y)2 + x2, we can
conclude that the forms Q = (2,2,1) and Q′ = (1,0,1) represent the same integers. In fact we have
Q′(x + y, x) = Q(x, y) and Q(x, y − x) = Q′(x, y).

Note, however that sometimes forms that represent the same integers are not equivalent. Fur-
ther, two forms having the same discriminant does not guarantee equivalence.

To define equivalent forms more formally, recall that the special linear group or modular group
is defined by

SL2(Z) =
⎧⎪⎪⎨⎪⎪⎩
( r s
t u

)
RRRRRRRRRRR
r, s, t, u ∈ Z, ru − st = 1

⎫⎪⎪⎬⎪⎪⎭
Given any matrix N = ( r st u ) ∈ SL2(Z) and its transpose NT , we can act on the quadratic form

(A,B,C) by either computing

NTM(Q)N = ( 2(Ar2 +Brt +Ct2) 2(Ars +Ctu) +B(ru + st)
2(Ars +Ctu) +B(ru + st) 2(As2 +Bsu +Cu2) )
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or

NTm(Q)N = ( Ar2 +Brt +Ct2 1
2[2(Ars +Ctu) +B(ru + st)]

1
2[2(Ars +Ctu) +B(ru + st)] As2 +Bsu +Cu2 )

to produce M(Q∣N) (respectively m(Q∣N)) for a new quadratic form

Q∣N = (A′,B′,C ′) = (Ar2 +Brt +Ct2,2(Ars +Ctu) +B(ru + st),As2 +Bsu +Cu2)

Given two matrices N1 and N2 we have

M(Q∣N1N2) = (N1N2)TM(Q)(N1N2) = (N2)T (N1)TM(Q)N1N2

Thus Q∣N1N2 = (Q∣N1)∣N2 . In other words, the action of SL2(Z) on a quadratic form Q is a right
action.

Proposition 2. If N = ( r st u ) then Q∣N = Q(rx + sy, tx + uy) = Q (( r st u ) ( xy ))

Proof. Assume Q′(x, y) = Q∣N(x, y), then we have

Q′(x, y) = ( x y )m(Q′)( x
y

)

= ( x y )NTm(Q)N ( x
y

)

= ( x y )( r t
s u

)m(Q)( r s
t u

)( x
y

)

= ( rx + sy tx + uy )m(Q)( rx + sy
tx + uy )

= Q(rx + sy, tx + uy)

We say that two binary quadratic forms Q and Q′ are equivalent, denoted Q′ ∼ Q, if there exists
an N ∈ SL2(Z) such that Q′ = Q∣N . Since SL2(Z) is a group, this defines an equivalence relation on
binary quadratic forms. We denote the equivalence class containing the form Q by [Q] and define
the class number (in the strict sense) to be the number of equivalence classes of primitive binary
quadratic forms with fixed discriminant ∆, denoted h+(∆) or simply h(∆) for ∆ < 0.

Proposition 3 (Proposition 1.1 of Lemmermeyer). If Q = (A,B,C) is a binary quadratic form,
N ∈ SL2(Z), and Q′ = Q∣N = (A′,B′,C ′), then the following are true:

(i) ∆(Q) = ∆(Q′)

(ii) gcd(A,B,C) =gcd(A′,B′,C ′)

(iii) Q and Q′ represent exactly the same integers. Further they represent exactly the same integers
primitively.

Proof.
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(i) We know that NTM(Q)N = M(Q′). Taking the determinants of both sides and using the
multiplication property of determinants we have

detNT ⋅ detM(Q) ⋅ detN = detM(Q′)

and hence
detM(Q) = detM(Q′)

Using fact (1) about M(Q) we have the desired equality.

(ii) Let N = ( r st u ) then we have

A′ = Ar2 +Brt +Ct2

B′ = 2(Ars +Ctu) +B(ru + st)
C ′ = As2 +Bsu +Cu2

From the above relationships we know that gcd(A,B,C)∣gcd(A′,B′,C ′). Similarly since
detN = 1, N is invertible so we have

M(Q′∣N−1) = (N−1)TM(Q′)N−1

= (N−1)TNTM(Q)NN−1

=M(Q)

Therefore we also have gcd(A′,B′,C ′)∣gcd(A,B,C).

(iii) Assume Q(x, y) = n and recall that Q′(x, y) = Q(rx + sy, tx + uy) where (x, y)NT = (rx +
sy, tx + uy). Using the fact that Q = Q′∣N−1 and a slight abuse of notation we have n =
Q(x, y) = Q′((x, y)(N−1)T ) = Q′(x′, y′). Since N ∈ SL2(Z) we also have N−1 ∈ SL2(Z) which
gives that x′, y′ ∈ Z. The second claim can be proved by combining (ii) with the first claim.

Example 2. Acting on Q = (A,B,C) by the shift operation Tn = ( 1 n
0 1 ) gives

Q′ = Q∣Tn = (A,B + 2An,An2 +Bn +C)

(Note that C ′ = Q(n,1)) Shifting is often used to reduce B modulo 2A.
The flip operation S = ( 0 −1

1 0 ) transforms Q into

Q′ = Q∣S = (C,−B,A)

A natural question when studying binary quadratic forms is how can we decide if two forms
are equivalent, and if they are, how can we find the matrix that relates the two? Answering this
question lead mathematicians to develop a theory known as reduction. It was discovered that the
method of reducing a quadratic form depended on the type of integers represented by that form.
This leads us to the following definitions.

A binary quadratic form Q is:

• positive definite if Q > 0 for all x, y ≠ 0
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• negative definite if Q < 0 for all x, y ≠ 0

• positive semi-definite if Q ≥ 0 for x, y ≠ 0

• negative semi-definite if Q ≤ 0 for x, y ≠ 0

• indefinite if Q takes on both positive and negative values.

Proposition 4. Let Q = (A,B,C) be a binary quadratic form. The the following is true:

(i) If ∆ > 0, then Q is indefinite.

(ii) If ∆ = 0, then Q is semi-definite but not definite.

(iii) If ∆ < 0, then Q is positive definite with A,C > 0 or negative definite with A,C < 0.

Proof. To prove some cases we will make use of the identity

4AQ(x, y) = (2Ax +Ay)2 −∆y2.

(i) Assume ∆ > 0. Then Q(1,0) = A and Q(B,−2A) = −A∆ have opposite signs unless A = 0.
Using symmetry we also have Q(0,1) = C and Q(−2C,B) = −C∆ with opposite signs unless
C = 0. Consider, then, the case that both A and C are 0. Then we have Q(x, y) = Bxy with
Q(1,1) = B and Q(1,−1) = −B of opposite sign.

(ii) Assume ∆ = 0 and A ≠ 0, then the identity above becomes

4AQ(x, y) = (2Ax +By)2

Since the right hand side is always positive, we have that A and the non-zero values of Q
must always have the same sign. Note that Q(B,−2A) = −AD = 0 where A ≠ 0 so the form is
not definite. Now assume A = 0, that gives that ∆ = B2 = 0 and hence B = 0 so the form is
Q = Cy2 whose non-zero values always has the same sign as C. Noting that Q(x,0) = 0 for
any x shows that the form is not definite.

(iii) Finally, Assume ∆ < 0 then we have

4AC = B2 −∆ ≥ −∆ > 0

which gives that A and C must have the same sign. From the identity we also know that
4AQ(x, y) > 0 for (x, y) ≠ (0,0) giving that Q and A always have the same sign. Hence if
A,C > 0 then Q is positive definite and if A,C < 0 then Q is negative definite.

Joseph-Louis Lagrange proved that for every fixed discriminant, ∆ ≠ 0, there are finitely many
classes of binary quadratic forms with discriminant ∆. He then proposed an algorithm to find a
canonical representative for each of these equivalence classes by finding the form with the smallest
possible coefficients. This reduction method was widely accepted but only for forms of negative
discriminant. When it came to the case of positive discriminants, several different methods of
reduction arose with no one agreeing on which method was the best.
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The goal of this paper is to give a brief introduction to Lagrange reduction, the reduction
theory used for binary forms of negative discriminant and to consolidate the applications and
results of three different methods of reduction for positive discriminants: Gauss, Zagier, and Siegel.
Finally, we will add a bit to the study of Siegel reduction as it is the reduction theory that is least
developed and discuss how the different methods are related. Sections on Lagrange, Gauss, and
Zagier reduction primarily are taken from Franz Lemmermeyer’s Binary Quadratic Forms [Lem10],
sections on Siegel-reduction are primarily taken from C.L. Siegel’s Lectures on Quadratic Forms
[SR55].
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Chapter 2

Lagrange Reduction

Lagrange’s development of reduction was motivated by trying to find a canonical representative of
each equivalence class by calculating the form in the class with the smallest possible coefficients.
He began by minimizing the first coefficient and found that given a binary quadratic form Q =
(A,B,C), the form with minimal first coefficient A in the equivalence class [Q] is that one such
that A = n where n is the smallest integer represented by Q. Continuing this process of minimizing
coefficients, we get the following proposition.

Proposition 5 (Proposition 1.4 of Lemmermeyer). Every equivalence class of binary quadratic
forms contains a form (A,B,C) with ∣B∣ ≤ ∣A∣ ≤ ∣C ∣.

Proof. Let Q = (A,B,C) with minimal ∣A∣ and apply the shift operation Tn to reduce B modulo
2A. Continue this process until you find an equivalent form Q′ = (A,B′,C ′) such that ∣B′∣ ≤ ∣A∣.
Since A = n is the smallest integer represented by [Q] and ∣Q′(0,1)∣ = ∣C ′∣ we also have ∣A∣ ≤ ∣C ′∣.

A form that satisfies the above inequalities is called Lagrange-Reduced. Proposition 5 shows
that every form is equivalent to a Lagrange-reduced form. To reduce a given quadratic form
Q = (A,B,C) to its corresponding Lagrange-Reduced form we can follow the following process:

(1) If ∣B∣ ≤ ∣A∣ then either Q is already reduced or ∣A∣ > ∣C ∣. If Q is reduced then we are done.
Otherwise apply S = ( 0 −1

1 0 ) to produce Q′ = (C,−B,A) = (A′,B′,C ′). If ∣B′∣ = ∣B∣ ≤ ∣A∣ then

∣B′∣ ≤ ∣A′∣ < ∣C ′∣ and we are done. Otherwise ∣B∣ > ∣A′∣ and we proceed to the following steps
with Q = Q′.

(2) If ∣B∣ > ∣A∣, choose an n such that ∣2An −B∣ ≤ ∣A∣ < ∣B∣ (such n is guaranteed to exist by the
division algorithm applied to B

2A with remainder in [−A,A]).

(3) Apply the matrix Rn = ( n 1−1 0 ) = ( 1 −n
1 0 ) ( 0 −1

1 0 ) to produce the form

Q′ = (A′,B′,C ′) = Q∣Rn = (An2 −Bn +C,2An −B,A)

By choice of the n above, we have ∣B′∣ ≤ ∣C ′∣ and ∣B′∣ < ∣B∣.

(4) Continue this process of reducing ∣B∣ by applying the necessary Rn. Since ∣B∣ cannot decrease
indefinitely, we must eventually reach a form Q′′ = (A′′,B′′,C ′′) where ∣B′′∣ ≤ ∣C ′′∣ and ∣B′′∣ ≤
∣A′′∣. If ∣A′′∣ ≤ ∣C ′′∣ then Q′′ is Lagrange-reduced. Otherwise, applying a flip we get Q′′∣S =
(C ′′,−B′′,A′′) is Lagrange-reduced.
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Proposition 6 (Proposition 1.5 of Lemmermeyer). The coefficients of a Lagrange-Reduced form
(A,B,C) satisfy the following inequalities:

∣B∣ ≤
√

−∆

3
, ∣A∣ ≤

√
−∆

3
, ∣C ∣ ≤ 1 −∆

4
, if ∆ < 0, and

∣B∣ ≤
√

∆

5
, ∣A∣ ≤

√
∆

2
, ∣C ∣ ≤ ∆

4
, if ∆ > 0

Proof. We will split the proof into two cases. First assume that Q = (A,B,C) is a form with
discriminant ∆ = B2 − 4AC < 0. ∆ < 0 implies AC > 0 and since Q is Lagrange-reduced we have

−∆ = 4AC −B2 ≥ 4A2 −A2 = 3A2

which immediately gives

∣B∣ ≤ ∣A∣ ≤
√

−∆

3

To get the last inequality we need to do some algebraic manipulations.

∣C ∣ = 4∣AC ∣
4∣A∣

= 4AC

4∣A∣
= B

2 − (B2 − 4AC)
4∣A∣

= B2

4∣A∣
− ∆

4∣A∣

Using the fact that Q is Lagrange-reduced we have

∣C ∣ ≤ A2

4∣A∣
− ∆

4∣A∣
= ∣A∣

4
− ∆

4∣A∣
.

Since A ≠ 0, there are two cases to consider:

1 ≤ A ≤
√

−∆

3
or

√
−∆

3
≤ A ≤ −1

If A ≥ 1 then the inequality becomes

∣C ∣ ≤ A
2 −∆

4A

The right hand side is decreasing as a function of A on the interval [1,
√
−∆] and thus the maximum

must be attained at A = 1. Similarly, if ∣A∣ ≤ −1 we have

∣C ∣ ≤ −A2 +∆

4A

where the right hand side is an increasing function of A on the interval [−
√
−∆,−1] and hence the

maximum must be attained at A = −1. Putting these together we have that the maximum occurs
at ∣A∣ = 1 and hence

∣C ∣ ≤ 1

4
− ∆

4
= 1 −∆

4

as needed.
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Now assume that Q = (A,B,C) has discriminant ∆ = B2 − 4AC > 0. Since Q is Lagrange-
reduced we have B2 ≤ ∣AC ∣ and since B2 − 4AC > 0 we also have B2 > 4AC. This shows that
AC < 0. Using these facts we have

5B2 = B2 + 4B2 ≤ B2 + 4∣AC ∣ = ∆

which gives the needed inequality for ∣B∣. Now, using the fact that B2 ≥ 0 and Q is Lagrange-reduced
we have

∆ = B2 + 4∣AC ∣ ≥ 4A2

Giving the desired condition for A. Lastly we have

4∣C ∣ ≤ 4∣AC ∣ = ∆ −B2 ≤ ∆

isolating C finishes the proof.

This proposition not only proves that there are only finitely many equivalence classes for fixed
discriminant ∆, but it also allows us to compute all Lagrange-reduced forms will small discriminant.

∆ Lagrange-Reduced Forms

21 (1,±1,−5), (−1,±1,5)
20 (1,0,−5), (−1,0,5), (2,±2,−2)
17 (1,±1,−4), (−1,±1,4), (±2,1 ∓ 2), (±2,−1,∓2)
13 (1,±1,−3), (−1,±1,3)
12 (1,0,−3), (−1,0,3)
8 (1,0,−2), (−1,0,2)
5 (1,±1,−1), (−1,±1,1)
−3 (1,±1,1)
−4 (1,0,1)
−7 (1,±1,2)
−8 (1,0,2)
−11 (1,±1,3)
−12 (1,0,3), (2,±2,2)
−15 (1,±1,4), (2,±1,2)
−16 (1,0,4), (2,0,2)

Table 2.1: Lagrange-reduced forms with −16 ≤ ∆ ≤ 21, ∆ fundamental

1 Reduction of Positive Definite Forms

The reduction theory of primitive forms of negative discriminant is simpler than that of those with
positive discriminant. In fact, by using Lagrange-reduction for positive definite forms, we only
need a slight adjustment to ensure that there is exactly one reduced form in each equivalence class
of quadratic forms. As such, positive definite binary quadratic forms have been much developed,
while indefinite forms have not. We will first give a brief summary on the reduction of forms with
negative discriminant before we move on to the main part of the paper on the reduction of indefinite
forms.
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Recall from the introduction that a form (A,B,C) is positive definite if Ax2+Bxy+Cy2 > 0 for
any (x, y) ≠ (0,0). For simplicity, we will only consider positive definite forms that are primitive.
We say that a positive definite primitive form Q = (A,B,C) is reduced if it is Lagrange-reduced
(∣B∣ ≤ A ≤ C) and B ≥ 0 when one of the inequalities is not strict.

For each discriminant ∆ ≡ 0,1 (mod 4), we associate a Lagrange-reduced form Q0 called the
principal form. The principal form is defined by

Q0 =
⎧⎪⎪⎨⎪⎪⎩

(1,0, k), ∆ = −4k

(1,1, k), ∆ = 1 − 4k

Lemma 1 (Legendre’s Lemma). If Q = (A,B,C) is reduced, then the smallest integers primitively
represented by Q (in ascending order) are:

A, C, A −B +C if B > 0

A, C, A +B +C if B < 0

Proof. Assume B > 0 and note that Q(±1,0) = A, Q(0,±1) = C, and Q(±1,∓1) = A −B +C. There
are three cases for Q(x, y) ≠ A,C,A −B +C.

If ∣x∣ = ∣y∣

Q(x, y) = Ax2 +Bx(±x) +Cx2 = x2(A ±B +C) ≥ x2(A −B +C) > A −B +C

If ∣x∣ > ∣y∣ then

Q(x, y) ≥ Ax2 −B∣x∣∣y∣ +Cy2 > A∣x∣∣y∣ −∣Bxy∣ +Cy2 = ∣xy∣ (A −B) +Cy2

≥ (A −B +C)y2 > A −B +C

If ∣x∣ < ∣y∣ then

Q(x, y) ≥ Ax2 −∣Bxy∣ +Cy2 > x2(A −B +C) > A −B +C

Lastly, since Q is Lagrange-reduced, we have A ≤ C and C ≤ A −B +C.
For the corresponding cases of B < 0, simply note that the two forms Q = (A,B,C) and

Q′ = (A,−B,C) represent the same integers primitively as Q(x, y) = Q′(x,−y)

Corollary 1 (Corollary 1.13 of Lemmermeyer). If Q is a positive definite quadratic form that
represents 1, then Q ∼ Q0.

Proof. Without loss of generality, assume Q = (A,B,C) is reduced (otherwise find its equivalent
reduced form). By Legendre’s Lemma we have that A = 1 and since ∣B∣ ≤ ∣A∣ = 1 either Q = (1,0,C)
or Q = (1,1,C).

Theorem 1 (Theorem 1.11 of Lemmermeyer). Every class of primitive positive definite quadratic
forms contains a unique reduced form.

Proof. Assume Q = (A,B,C) and Q′ = (A′,B′,C ′) are equivalent and reduced. By Legendre’s
Lemma, since Q and Q′ are reduced and represent the same integers, we have that C,C ′ ≥ A = A′.
This splits the proof into two cases.
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Assume C = A. Then we have that Q(±1,0) = Q(0,±1) = A so A is represented at least four
times by Q and Q′. This gives that C ′ = A = C. Since ∆(Q) = ∆(Q′) we have that ∣B∣ = ∣B′∣ but Q
and Q′ are both reduced with A = C and A′ = C ′ so B,B′ > 0 and Q = Q′.

Now assume C > A. We have that Q and Q′ represent A exactly twice with A = A′ = Q(±1,0) =
Q′(±1,0). By Legendre’s Lemma, we have that C is the second smallest integer represented by
Q and C ′ the second smallest integer represented by Q′ which gives C = C ′. Now by the same
argument as above we have that B′ = ±B. If B′ = B, we are done so assume B′ = −B. We then
have that (A,B,C) ∼ (A,−B,C) with Q′ = Q∣N for some N ∈ SL2(Z). Let N = ( r st u ), then we have

A = A′ = Ar2 +Brt +Ct2

By assumption C > A which gives t = 0 and subsequently r = ±1 and u = r. With these values of t,
r, and u we have

B′ = −B = 2As +B or equivalently B′ = −B = As

Again, Q is reduced so ∣B∣ ≤ A which gives s = 0 or s = ±1. If s = 0 then B′ = B = 0 and if s = ±1
then B = −A or B′ = −A′ which is impossible since Q and Q′ are reduced.

The number of Lagrange-reduced forms of discriminant ∆ is called the Kronecker class number,
denoted H(∆). Recall from Chapter 1 that the class number, h(∆), is the number of primitive
reduced forms of discriminant ∆ < 0.

Corollary 2. H(∆) = h(∆) when ∆ is a fundamental discriminant. Furthermore h(∆) = 1 if and
only if the only primitive reduced form is Q0

Proof. The first claim is clear by the definition of a fundamental discriminant and the second follows
immediately from Theorem 1 along with the fact that the principal form Q0 is primitive for every
discriminant.

We can now create a table of reduced forms of small discriminant.

∆ H(∆) Lagrange-Reduced Forms h(∆) Primitive Reduced Forms

−3 1 (1,1,1) 1 (1,1,1)
−4 1 (1,0,1) 1 (1,0,1)
−7 1 (1,1,2) 1 (1,1,2)
−8 1 (1,0,2) 1 (1,0,2)
−11 1 (1,1,3) 1 (1,1,3)
−12 2 (1,0,3), (2,2,2) 1 (1,0,3),
−15 2 (1,1,4), (2,1,2) 2 (1,1,4), (2,1,2)
−16 2 (1,0,4), (2,0,2) 1 (1,0,4)

Table 2.2: Reduced forms with −16 ≤ ∆ ≤ −3
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Chapter 3

Zagier Reduction

One desired result for both positive definite and indefinite quadratic forms is to define a reduction
method where there is one reduced form per equivalence class. Though the definition of a reduced
form using Lagrange reduction produced this result in most cases for positive definite forms, it fails
to do so for indefinite forms. The first reduction theory for indefinite quadratic forms that we will
introduce was developed by Zagier with motivation similar to Lagrange.

1 Zagier-reduced Forms

Given a quadratic form (A,B,C) of discriminant ∆, we find an equivalent form with minimal A > 0
and change B modulo 2∣A∣ so that B ∈ [

√
∆,

√
∆ + 2A]. This gives that AC > 0 and A ≤ C (as

Q(0,1) = C). We say that a form (A,B,C) with positive non-square discriminant is Zagier-reduced
if the coefficients satisfy

√
∆ < B <

√
∆ + 2A and

√
∆ < B <

√
∆ + 2C.

Theorem 2 (Theorem 1.14 of Lemmermeyer). Let (A,B,C) be a primitive indefinite form with
discriminant ∆. The following statements are equivalent:

(i) (A,B,C) is Zagier-reduced

(ii) 0 < B−√∆
2A < 1 < B+√∆

2A

(iii) A > 0, C > 0, B > A +C

Proof.
(i)⇒ (ii): Since (A,B,C) is Zagier-reduced,

√
∆ < B <

√
∆ + 2A and

√
∆ < B <

√
∆ + 2C

which gives

0 < B −
√

∆ < 2A and 0 < B −
√

∆ < 2C

We then have

2A = B
2 −∆

2C
< B2 −∆

B −
√

∆
= B +

√
∆

17



Combining these inequalities gives

0 < B −
√

∆ < 2A < B +
√

∆

Dividing by 2A gives the desired inequality.
(ii)⇒ (iii): If A < 0 then multiplying by 2A would yield B +

√
∆ < B −

√
∆, so we know A > 0 and

B −
√

∆ > 0.
Now assume C < 0. Then we have ∆ = B2 − 4AC > B2 and hence

√
∆ > B which contradicts

B −
√

∆ > 0.
Lastly,

B −
√

∆

2A
< 1 < B +

√
∆

2A
⇔ B −

√
∆ < 2A < B +

√
∆

⇔ −
√

∆ < 2A −B <
√

∆

⇔ ∣B − 2A∣ <
√

∆

⇔ (B − 2A)2 < ∆

⇔∆ − (B − 2A)2 = 4A(B −A −C) > 0

⇔ B −A −C > 0

⇔ B > A +C.

(iii)⇒ (i):

B > A +C, A > 0⇒∆ − (B − 2A)2 = 4A(B −A −C) > 0

⇒∆ > (B − 2A)2

⇒
√

∆ > ∣B − 2A∣

⇒ B − 2A <
√

∆

⇒ B <
√

∆ + 2A

By a similar argument, B <
√

∆+2C. Finally, since A,C > 0 we have ∆ < B2 and hence
√

∆ < B.

Proposition 7 (Proposition 1.15 of Lemmermeyer). The coefficients of Zagier-reduced forms sat-
isfy

0 < A,C ≤ ∆

4
and

√
∆ < B ≤

√
∆2 + 4∆

2

Proof. By Theorem 2 we know A,C > 0 and B > A +C which gives

0 < A = ∆ − (B − 2A)2

4(B −A −C)
≤ ∆

4

By a similar argument, the inequality also holds for C. Using this result, we now have

B2 = ∆ + 4AC ≤ ∆ + ∆2

4
= ∆2 + 4∆

4

Since (A,B,C) is Zagier-reduced we have the desired inequality.
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Proposition 7 shows that there are only finitely many Zagier-reduced forms of fixed discriminant
and allows us to compute the following table:

∆ κZ Primitive Zagier-reduced Forms

5 1 (1,3,1)
8 2 (1,4,2), (2,4,1)
12 3 (1,4,1), (2,6,3), (3,6,2)
13 3 (1,5,3), (3,5,1), (3,7,3)
17 5 (1,5,2), (2,5,1), (2,7,4), (4,7,2), (4,9,4)
20 4 (1,6,4), (4,6,1), (4,10,5), (5,10,4)

Table 3.1: Primitive Zagier-reduced forms of small fundamental discriminant

Here κZ(∆) denotes the amount of Zagier-reduced forms with discriminant ∆ and is called the
caliber of the discriminant.
By construction, we know that every form is equivalent to at least one Zagier-reduced form. To
determine if two forms are equivalent, we can simply reduce both forms and check whether their
corresponding Zagier-reduced forms are equivalent. To see which Zagier-reduced forms are equiva-
lent, we will make use of a reduction operator which has the useful property that two reduced forms
are equivalent if they belong to the same cycle of that operator.

2 Zagier-Reduction Operator

Define F∆ to be the set of primitive forms of discriminant ∆ and R∆ to be the subset of reduced
forms in F∆. We say that a map ρ ∶ F∆ → F∆ is a reduction operator if it satisfies the following

(i) For any Q ∈ F∆, there exists a non-negative integer ν such that ρν(Q) is reduced.

(ii) ρ(Q) is reduced if Q is reduced.

We call ρ(Q) the right neighbor of Q and say that a form is semi-reduced if it is in the image of ρ.
To find the right neighbor of a form Q = (A,B,C), apply the matrix Rn = ( n 1−1 0 ) = ( 1 −n

0 1 ) ⋅ ( 0 1−1 0 )
where n is such that n−1 < B+√∆

2A < n to get an equivalent form Q′ = (A′,B′,C ′). (Note that this is
the process of applying a shift followed by a flip.) Alternatively we can compute the right neighbor
as follows:

(1) C ′ = A

(2) B +B′ ≡ 0 (mod 2A) and

⎧⎪⎪⎨⎪⎪⎩

√
∆ < B′ <

√
∆ + 2A if A > 0√

∆ + 2A < B′ <
√

∆ if A < 0

(3) (B′)2 − 4A′C ′ = ∆

The proof that this is in fact a reduction map will need the following lemma.

Lemma 2 (Lemma 1.17 of Lemmermeyer). Let Q = (A,B,C) be an indefinite form of discriminant
∆ and let Q′ = (A′,B′,C ′) be its right neighbor. The following statements hold:
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(i) If A < 0 then A′ > A

(ii) If A > 0 then A′ > 0

(iii) If A′ ≥ A > 0, then Q′ is Zagier-reduced

(iv) If Q is Zagier-reduced then Q′ = Q∣Rn for Rn = ( n 1−1 0 ) and n ≥ 2

Proof. Define 0 < θ < 1 to be such that n = B+√∆
2A + θ. Then we have

A′ = An2 −Bn +C = A
⎛
⎝
B +

√
∆

2A
+ θ

⎞
⎠

2

−B
⎛
⎝
B +

√
∆

2A
+ θ

⎞
⎠
+C = θ

√
∆ +Aθ2

This gives for A < 0
A′ −A = θ

√
∆ +Aθ2 −A = A(θ2 − 1) + θ

√
∆ > 0

which proves (i). Assume A > 0, then (ii) follows from A′ = θ
√

∆ +Aθ2 > 0.
Assume A′ ≥ A > 0 then

0 ≤ A′ −A

= θ
√

∆ −A(1 − θ2)

< (θ + 1)
√

∆ −A(1 − θ2)

= (θ + 1)(
√

∆ −A(1 − θ))

= θ + 1

1 − θ
(
√

∆(1 − θ) −A(1 − θ)2)

= θ + 1

1 − θ

⎛
⎜⎜
⎝

√
∆

⎛
⎜
⎝

1 −
⎛
⎝
n − B +

√
∆

2A

⎞
⎠

⎞
⎟
⎠
−A

⎛
⎜
⎝

1 −
⎛
⎝
n − B +

√
∆

2A

⎞
⎠

⎞
⎟
⎠

2⎞
⎟⎟
⎠

= θ + 1

1 − θ
(B′ −A′ −C ′)

This gives B′ > A′ +C ′ and since C ′ = A we have A′ ≥ C ′ > 0. By Theorem 2, Q′ is reduced. Lastly,

assume Q is Zagier-reduced. By Theorem 2, B+√∆
2A = n − θ > 1 which implies n ≥ 2

Proposition 8 (Proposition 1.18 of Lemmermeyer). The map ρ defined above is a reduction oper-
ator on indefinite forms.

Proof. There are two things we need to show for Q = (A,B,C):

(1) There is a nonnegative integer ν such that ρν(Q) is Zagier-reduced.

(2) If Q Zagier-reduced then ρ(Q) is also Zagier-reduced

If A < 0 then by Lemma 2, we can apply ρ until we have a form with A > 0. Applying ρ once
more will give C ′ = A > 0 and A′ > 0. Since the first coefficient stays positive and can’t decrease
indefinitely, there must be a point at which A′ ≥ A and by Lemma 2, applying ρ produces a Zagier-
reduced form. Now assume Q is Zagier-reduced, then by Theorem 2 we have A > 0, C > 0, and
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hence A′,C ′ = A > 0. Using Theorem 2 we have that ρ(Q) is Zagier-reduced if B′ > A′ + C ′ or
equivalently B′ −A′ −C ′ > 0. Indeed

B′ −A′ −C ′ =
√

∆(1 − θ) −A(1 − θ)2 = (1 − θ)(
√

∆ −A(1 − θ)).

Since θ < 1, (1 − θ) > 0 and using the results from Theorem 2 and Lemma 2 we have

√
∆

A
= B +

√
∆

2A
− B −

√
∆

2A

= n − θ − ξ2

> 1 − θ.

Thus
√

∆ −A(1 − θ) > 0 and B′ −A′ −C ′ > 0 as needed.

With the above definition, some forms may have the same right neighbor. For this reason we define
forms to be semi-reduced (in the Zagier sense) if they satisfy the following conditions

⎧⎪⎪⎨⎪⎪⎩

√
∆ < B <

√
∆ + 2A if A > 0√

∆ + 2A < B <
√

∆ if A < 0

Proposition 9 (Proposition 1.19 of Lemmermeyer). The reduction operator ρ is injective on semi-
reduced forms.

Proof. Assume (A1,B1,C1) and (A2,B2,C2) are semi reduced forms that both map to (A′,B′,C ′).
Immediately we have C ′ = A1 = A2 so define A to be this common value. We now have

B1 +B′ ≡ 0 (mod 2A) and B2 +B′ ≡ 0 (mod 2A)

As such, let n1 and n2 be integers such that

B1 = 2An1 −B′ and B2 = 2An2 −B′

Using this we have ∣B1 −B2∣ = 2A∣n1 − n2∣ and since B1 and B2 both lie in an interval of length
2A we know that ∣B1 −B2∣ < 2A. This gives n1 = n2 and thus B1 = B2. Since ∆ is fixed, we have
(A1,B1,C1) = (A2,B2,C2)

This injection on semi-reduced forms allows us to create an inverse reduction operator λ for semi-
reduced Q. In this case, λ(Q) is called the left neighbor of Q. We can find the left neighbor of Q
by reversing the above process:

(1) A = C ′

(2) B +B′ ≡ 0 (mod 2C ′) and

⎧⎪⎪⎨⎪⎪⎩

√
∆ < B <

√
∆ + 2C ′ if C ′ > 0√

∆ + 2C ′ < B <
√

∆ if C ′ < 0

(3) B2 − 4AC = ∆

For primitive quadratic forms Q = (A,B,C) this is equivalent to defining λ(Q) as Q∣Sn for Sn =
( 0 −1

1 n ) for n such that n − 1 < B+√∆
2C < n With this definition, the following lemma is clear:
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Lemma 3 (Lemma 1.21 of Lemmermeyer). If Q is semi-reduced, then λ○ρ(Q) = Q and ρ○λ(Q) = Q

Corollary 3 (Corollary 1.22 of Lemmermeyer). The reduction operator ρ permutes the set of
reduced forms

Proof. From Proposition 9 we have that ρ is injective on semi-reduced forms (and hence reduced
forms) and by Proposition 8 we know that if Q is reduced then so is ρ(Q). Since the set of reduced
forms of a fixed discriminant ∆ is finite, we have the needed bijection.

Using the reduction operator ρ allows us to create the following table of cycles:

∆ h+(∆) Cycles

5 1 (1,3,1)
8 1 (1,4,2)(2,4,1)
12 2 (1,4,1)

(2,6,3)(3,6,2)
13 1 (1,5,3)(3,5,1)(3,7,3)
17 1 (1,5,2)(2,5,1)(2,7,4)(4,7,2)(4,9,4)
20 1 (1,6,4)(4,6,1)(5,10,4)(4,10,5)
21 2 (1,5,1)

(3,9,5)(5,9,3)(5,11,5)
24 2 (1,6,3)(3,6,1)

(2,8,5)(5,8,2)(6,12,5)(5,12,6)

Table 3.2: Cycles of Zagier-reduced forms with small discriminant
We know that if two forms are in the same cycle, they must be equivalent, but the converse is true
as well. To prove this result we need the following fundamental lemma.

Lemma 4 (Lemma 1.24 of Lemmermeyer). Let Q and Q′ be Zagier-reduced forms. If Q ∼ Q′ with
Q′ = Q∣N then N is the product of reduction matrices Rn.

Proof. Let N = ( r st u ). Then we have that Q′ = (A′,B′,C ′) where

A′ = Ar2 +Brt +Ct2 = Q(r, t) > 0

C ′ = As2 +Bsu +Cu2 = Q(s, u) > 0

A′ +C ′ −B′ = (Ar2 +Brt +Ct2) + (As2 +Bsu +Cu2) − (2Ars +Bru +Bst + 2Ctu)
= A(r − s)2 +B(r − s)(t − u) +C(t − u)2

= Q(r − s, t − u) < 0

by Theorem 2. If t = u then Q(r − s, t − u) = Q(r − s,0) > 0 which is a contradiction so we know
t ≠ u and since Q∣N = Q∣−N we can assume without loss of generality that u > t. We now split the
proof into three cases:

(i) If t = 0 then N ∈ SL2(Z) implies ru = 1 and u > t = 0 implies r = u = 1. This gives

C ′ = Q(s,1) > 0 > A′ +C ′ −B′ = Q(s − 1,1).

Since Q is Zagier reduced, we know

C = Q(0,1) > 0 > Q(−1,1) = A +C −B
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Since Q(s,1) is a quadratic polynomial, there is at most one integer such that Q(s,1) > 0 >
Q(s − 1,1) so s must be zero. This gives N = I and Q′ = Q.

(ii) If t < 0, we will show that Q′ = ρν(Q) for some ν ≥ 1. Let Q1 = ρ(Q) with corresponding
reduction matrix Rn1 . Then we have Q′ = Q1∣(Rn1)−1N so define N1 as

N1 = ( r1 s1

t1 u1
) = (Rn1)

−1
N = ( −t −u

r + tn s + nu )

We then have r1 −s1 = u− t > 0 so Q(r1 −s1, t1 −u1) = (r1 −s1)(t1 −u1) < 0 giving that u1 > t1.
This gives that if needed, we can repeat the process with Q1 to get Q2 = ρ(Q1) = Q1∣Rn1

and

Q′ = Q2∣(Rn2)−1(Rn1)−1N = Q2∣N2 where N2 = ( r2 s2
t2 u2 )

We now claim that eventually tν = 0 for some ν ≥ 1. To this end we prove that t < t1 ≤ 0 and
hence tk is an increasing sequence of nonpositive integers and must eventually reach 0. This
is equivalent to showing that t < r + nt ≤ 0 or

n − 1 ≤ −r
t
≤ n.

Note that for Q(x,−1) = Ax2 −Bx +C we have

Q(−r
t
,−1) = A′ > 0 > Q(−r + s

t − u
) = A′ +C ′ −B.

Since ru − st = 1 > 0 we know − rt >
−r+s
t−u which gives

−r + s
t − u

< B +
√

∆

2A
< −r

t

By choice of n we get the left side of the desired inequality n − 1 < B+√∆
2A < − rt . For the right

side, assume that − rt > n then we have

−r
t
> n⇒ −r + s

t − u
< n < −r

t
⇒ −rt + st < nt(t − u) < −rt + ru
⇒ st < nt(t − u) + rt < ru

ru − st = 1 implies that nt(t − u) + rt is not an integer which is a contradiction.

(iii) The proof for t > 0 is analogous to the proof of t < 0 by showing 0 ≤ t1 < t which is again
equivalent to n − 1 ≤ − rt ≤ n.

With the above fundamental lemma, the following main theorem of Zagier Reduction is clear.

Theorem 3 (Theorem 1.23 of Lemmermeyer). Two primitive Zagier-reduced forms of discriminant
∆ are equivalent if and only if they belong to the same cycle.
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We end the chapter with a table of the cycles of Zagier-reduced forms of fundamental discriminant
less than 100.

∆ h+ # Cycles

5 1 − (1,3,1)
8 1 − (2,4,1)(1,4,2)
12 2 1 (1,4,1)

2 (3,6,2)(2,6,3)
13 1 − (3,5,1)(3,7,3)(1,5,3)
17 1 − (2,5,1)(4,7,2)(4,9,4)(2,7,4)(1,5,2)
21 2 1 (1,5,1)

2 (5,9,3)(5,11,5)(3,9,5)
24 2 1 (3,6,1)(1,6,3)

2 (5,8,2)(6,12,5)(5,12,6)(2,8,5)
28 2 1 (2,6,1)(1,6,2)

2 (3,8,3)(6,10,3)(7,14,6)(6,14,7)(3,10,6)
29 1 − (5,7,1)(7,13,5)(7,15,7)(5,13,7)(1,7,5)
33 2 1 (4,7,1)(3,9,4)(4,9,3)(1,7,4)

2 (2,7,2)(6,9,2)(8,15,6)(8,17,8)(6,15,8)(2,9,6)
37 1 − (3,7,1)(7,11,3)(9,17,7)(9,19,9)(7,17,9)(3,11,7)(1,7,3)
40 2 1 (6,8,1)(9,16,6)(10,20,9)(9,20,10)(6,16,9)(1,8,6)

2 (2,8,3)(3,8,2)(5,10,3)(3,10,5)
41 2 1 (2,7,1)(5,9,2)(4,11,5)(8,13,4)(10,19,8)(10,21,10)(8,19,10)(4,13,8)(5,11,4)

(2,9,5)(1,7,2)
2 (8,13,4)(10,19,8)(10,21,10)(8,19,10)(4,13,8)(5,11,4)(2,9,5)(1,7,2)(2,7,1)

(5,9,2)(4,11,5)
44 2 1 (5,8,1)(5,12,5)(1,8,5)

2 (7,10,2)(10,18,7)(11,22,10)(10,22,11)(7,18,10)(2,10,7)
53 1 − (7,9,1)(11,19,7)(13,25,11)(13,27,13)(11,25,13)(7,19,11)(1,9,7)
56 2 1 (2,8,1)(1,8,2)

2 (7,14,5)(5,14,7)(10,16,5)(13,24,10)(14,28,13)(13,28,14)(10,24,13)(5,16,10)
57 2 1 (6,9,1)(7,15,6)(4,13,7)(4,11,4)(7,13,4)(6,15,7)(1,9,6)

2 (3,9,2)(2,9,3)(8,11,2)(12,21,8)(14,27,12)(14,29,14)(12,27,14)(8,21,12)(2,11,8)
60 4 1 (1,8,1)

2 (5,10,2)(2,10,5)
3 (11,18,6)(14,26,11)(15,30,14)(14,30,15)(11,26,14)(6,18,11)
4 (7,12,3)(7,16,7)(3,12,7)

61 1 − (5,9,1)(3,11,5)(9,13,3)(13,23,9)(15,29,13)(15,31,15)(13,29,15)(9,23,13)
(3,13,9)(5,11,3)(1,9,5)
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∆ h+ # Cycles

65 2 1 (4,9,1)(10,15,4)(14,25,10)(16,31,14)(16,33,16)(14,31,16)(10,25,14)(4,15,10)
(1,9,4)

2 (7,11,2)(8,17,7)(5,15,8)(8,15,5)(7,17,8)(2,11,7)(2,9,2)
69 2 1 (3,9,1)(1,9,3)

2 (5,13,5)(11,17,5)(15,27,11)(17,33,15)(17,35,17)(15,33,17)(11,27,15)(5,17,11)
73 3 1 (2,9,1)(6,11,2)(4,13,6)(3,11,4)(8,13,3)(9,19,8)(6,17,9)(12,19,6)(16,29,12)

(18,35,16)(18,37,18)(16,35,18)(12,29,16)(6,19,12)(9,17,6)(8,19,9)(3,13,8)
(4,11,3)(6,13,4)(2,11,6)(1,9,2)

2 (4,11,3)(6,13,4)(2,11,6)(1,9,2)(2,9,1)(6,11,2)(4,13,6)(3,11,4)(8,13,3)(9,19,8)
(6,17,9)(12,19,6)(16,29,12)(18,35,16)(18,37,18)(16,35,18)(12,29,16)(6,19,12)
(9,17,6)(8,19,9)(3,13,8)

3 (3,11,4)(8,13,3)(9,19,8)(6,17,9)(12,19,6)(16,29,12)(18,35,16)(18,37,18)
(16,35,18)(12,29,16)(6,19,12)(9,17,6)(8,19,9)(3,13,8)(4,11,3)(6,13,4)(2,11,6)
(1,9,2)(2,9,1)(6,11,2)(4,13,6)

76 2 1 (6,10,1)(5,14,6)(9,16,5)(9,20,9)(5,16,9)(6,14,5)(1,10,6)
2 (2,10,3)(3,10,2)(10,14,3)(15,26,10)(18,34,15)(19,38,18)(18,38,19)(15,34,18)

(10,26,15)(3,14,10)
77 2 1 (1,9,1)

2 (13,21,7)(17,31,13)(19,37,17)(19,39,19)(17,37,19)(13,31,17)(7,21,13)
85 2 1 (9,11,1)(15,25,9)(19,35,15)(21,41,19)(21,43,21)(19,41,21)(15,35,19)(9,25,15)

(1,11,9)
2 (3,11,3)(7,13,3)(5,15,7)(7,15,5)(3,13,7)

88 2 1 (3,10,1)(9,14,3)(11,22,9)(9,22,11)(3,14,9)(1,10,3)
2 (7,16,6)(2,12,7)(7,12,2)(6,16,7)(13,20,6)(18,32,13)(21,40,18)(22,44,21)

(21,44,22)(18,40,21)(13,32,18)(6,20,13)
89 2 1 (8,11,1)(11,21,8)(10,23,11)(5,17,10)(4,13,5)(2,11,4)(10,13,2)(16,27,10)

(20,37,16)(22,43,20)(22,45,22)(20,43,22)(16,37,20)(10,27,16)(2,13,10)(4,11,2)
(5,13,4)(10,17,5)(11,23,10)(8,21,11)(1,11,8)

2 (4,11,2)(5,13,4)(10,17,5)(11,23,10)(8,21,11)(1,11,8)(8,11,1)(11,21,8)
(10,23,11)(5,17,10)(4,13,5)(2,11,4)(10,13,2)(16,27,10)(20,37,16)(22,43,20)
(22,45,22)(20,43,22)(16,37,20)(10,27,16)(2,13,10)

92 2 1 (2,10,1)(1,10,2)
2 (11,20,7)(11,24,11)(7,20,11)(14,22,7)(19,34,14)(22,42,19)(23,46,22)(22,46,23)

(19,42,22)(14,34,19)(7,22,14)
93 2 1 (7,11,1)(7,17,7)(1,11,7)

2 (11,15,3)(17,29,11)(21,39,17)(23,45,21)(23,47,23)(21,45,23)(17,39,21)
(11,29,17)(3,15,11)
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∆ h+ # Cycles

97 3 1 (6,11,1)(3,13,6)(2,11,3)(9,13,2)(12,23,9)(11,25,12)(6,19,11)(8,17,6)(4,15,8)
(12,17,4)(18,31,12)(22,41,18)(24,47,22)(24,49,24)(22,47,24)(18,41,22)
(12,31,18)(4,17,12)(8,15,4)(6,17,8)(11,19,6)(12,25,11)(9,23,12)(2,13,9)
(3,11,2)(6,13,3)(1,11,6)

2 (11,19,6)(12,25,11)(9,23,12)(2,13,9)(3,11,2)(6,13,3)(1,11,6)(6,11,1)(3,13,6)
(2,11,3)(9,13,2)(12,23,9)(11,25,12)(6,19,11)(8,17,6)(4,15,8)(12,17,4)
(18,31,12)(22,41,18)(24,47,22)(24,49,24)(22,47,24)(18,41,22)(12,31,18)
(4,17,12)(8,15,4)(6,17,8)

3 (9,13,2)(12,23,9)(11,25,12)(6,19,11)(8,17,6)(4,15,8)(12,17,4)
(18,31,12)(22,41,18)(24,47,22)(24,49,24)(22,47,24)(18,41,22)(12,31,18)
(4,17,12)(8,15,4)(6,17,8)(11,19,6)(12,25,11)(9,23,12)(2,13,9)(3,11,2)(6,13,3)
(1,11,6)(6,11,1)(3,13,6)(2,11,3)

Table 3.3: Cycles of primitive Zagier-reduced forms with fundamental ∆ < 100
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Chapter 4

Gauss Reduction

We now introduce the concept of Gauss reduction, the reduction theory for indefinite forms on
which Zagier’s was based. Compared to Zagier-reduced forms, Gauss reduction produces smaller
coefficients but lengthier proofs.

1 Gauss-reduced Forms

Let Q = (A,B,C) be an indefinite binary quadratic form of discriminant ∆ with the condition that
∆ is not a square. Let A be such that ∣A∣ is the smallest integer represented by Q. Apply the shift
operation to reduced B modulo 2A until B lies in the interval

√
∆ − 2∣A∣ < B <

√
∆ of length 2A

(this differs from the condition
√

∆ < B <
√

∆ + 2A for Zagier-reduced forms). By the choice of ∣A∣
we also have ∣A∣ ≤ ∣C ∣ and thus such forms satisfy the following:

⎧⎪⎪⎨⎪⎪⎩

√
∆ − 2∣A∣ < B <

√
∆√

∆ − 2∣C ∣ < B <
√

∆.

We say that a quadratic form Q is Gauss-reduced if it satisfies the above two conditions. Forms
that satisfy the first condition are called semi-reduced.
As expected, Gauss-reduction produces very similar results to those of Zagier-reduction. The
following theorem can be contrasted with Theorem 2 in Section 3.1.

Theorem 4 (Theorem 1.36 of Lemmermeyer). Let Q = (A,B,C) be a primitive indefinite form.
The following are equivalent:

(i) (A,B,C) is Gauss-reduced

(ii) (−B+
√

∆
2A )(−B−

√
∆

2A ) < 0, ∣−B+
√

∆
2A ∣ < 1 < ∣−B−

√
∆

2A ∣

(iii) AC < 0, B > ∣A +C ∣

Proof. (i) ⇒ (ii): Assume Q is Gauss-reduced with AC > 0 then B2 − 4AC < B2 which implies√
∆ < B which contradicts the fact that Q is reduced so we know AC < 0. This gives

⎛
⎝
−B +

√
∆

2A

⎞
⎠
⎛
⎝
−B −

√
∆

2A

⎞
⎠
= 4AC

4A2
< 0
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The second inequality is equivalent to

∣−B +
√

∆∣ < 2∣A∣ < ∣−B −
√

∆∣

Since (A,B,C) is reduced we have B <
√

∆ so 0 < −B +
√

∆ < 2∣A∣ which gives the left side of the
inequality. For the right side we use the fact that AC < 0 along with the second condition of being
reduced to get

2∣A∣ = ∆ −B2

2∣C ∣
< ∆ −B2

√
∆ −B

=
√

∆ +B = ∣−B −
√

∆∣

(ii)⇔ (iii): (−B+
√

∆
2A )(−B−

√
∆

2A ) = AC
A2 < 0 shows that the first two inequalities of each of (ii) and

(iii) are equivalent. For the second ones we have

RRRRRRRRRRR

−B +
√

∆

2A

RRRRRRRRRRR
< 1 <

RRRRRRRRRRR

−B −
√

∆

2A

RRRRRRRRRRR
⇔

√
∆ −B
2∣A∣

< 1 < B +
√

∆

2∣A∣

⇔ −B +
√

∆ < 2∣A∣ <
√

∆ +B

⇔ −B < 2∣A∣ −
√

∆ < B

⇔ ∣2∣A∣ −
√

∆∣ < B

⇔ (2∣A∣ −
√

∆)2 < B2

⇔ B2 − (2∣A∣ −
√

∆)2 = −4∣A∣ (∣A∣ −
√

∆ +∣C ∣) > 0

⇔ ∣A∣ −
√

∆ +∣C ∣ < 0

⇔ ∣A∣ +∣C ∣ <
√

∆

⇔ A2 − 2AC +C2 < B2 − 4AC

⇔ (A +C)2 < B2

⇔ B > ∣A +C ∣ .

(ii) and (iii) ⇒ (i): We know from above that AC < 0 which gives B2 < ∆ and hence B <
√

∆.
Using this we can rewrite the second inequality of (ii) to get −B +

√
∆ < 2∣A∣ which is equivalent

to
√

∆ − 2∣A∣ < B. For the second condition of being reduced we use the same identity above with
the second assumption to get

2∣A∣ = ∆ −B2

2∣C ∣
< ∆ −B2

√
∆ −B

=
√

∆ +B.

This gives
√

∆ −B < 2∣C ∣ which is equivalent to
√

∆ − 2∣C ∣ < B as needed.

The following lemma is the Gauss-reduction equivalent of Proposition 7 for Zagier-reduced forms.

Lemma 5 (Lemma 1.37 of Lemmermeyer). A Gauss-reduced form Q = (A,B,C) satisfies the
following inequalities

(i) B > 0

(ii) AC < 0
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(iii) 0 < ∣A∣ ,B,∣C ∣ <
√

∆

Proof. Conditions (i) and (ii) are immediate from Theorem 4. Theorem 4 combined with the fact
that Q is Gauss-reduced gives the final inequality.

2 Gauss’ Reduction Operator

Like Zagier-reduction, there is a reduction operator ρ that works for Gauss-reduced forms. Given
a form Q = (A,B,C) of discriminant ∆, the right neighbor ρ(Q) = Q′ = (A′,B′,C ′) is constructed
as follows

(1) A′ = C

(2) B +B′ ≡ 0 (mod 2A′) and
√

∆ −∣2A′∣ < B′ <
√

∆

(3) (B′)2 − 4A′C ′ = ∆

Alternatively, one can notice that this process is equivalent to applying the matrix
( 0 1−1 n ) = ( 0 1−1 0 ) ⋅ ( 1 −n

0 1 ) (i.e. a flip followed by a shift), where n is such that B + B′ = 2Cn.
As such, the difference between the above operator and that for Zagier-reduction is that B′ is
chosen to be in a different interval.

The properties of the reduction operator for Gauss-reduced forms can be proven in a similar manner
than those of Zagier-reduction. We state the following facts analogous to Proposition 8, Proposition
9, and Theorem 3 without proof.

• If Q is a primitive indefinite form, then ρ(Q) is semi-reduced.

• If Q is reduced then ρ(Q) is also reduced.

• Every reduced form belongs to some cycle.

• Two forms are equivalent if and only if they belong to the same cycle.

Combining these facts together yields Gauss’ reduction theory for indefinite forms.
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Using the reduction operator we make the following table:

∆ h+ # Cycles

5 1 − (1,1,−1)(−1,1,1)
8 1 − (1,2,−1)(−1,2,1)
12 2 1 (1,2,−2)(−2,2,1)

2 (−1,2,2)(2,2,−1)
13 1 − (1,3,−1)(−1,3,1)
17 1 − (1,3,−2)(−2,1,2)(2,3,−1)(−1,3,2)(2,1,−2)(2,3,1)
20 1 − (1,4,−1)(−1,4,1)
21 2 1 (1,3,−3)(−3,3,1)

2 (−1,3,3)(3,3,−1)
24 2 1 (1,4,−2)(−2,4,1)

2 (−1,4,2)(2,4,−1)
28 2 1 (1,4,−3)(−3,2,2)(2,2,−3)(−3,4,1)

2 (−1,4,3)(3,2,−2)(−2,2,3)(3,4,−1)
29 1 − (1,5,−1)(−1,5,1)
32 2 1 (1,4,−4)(−4,4,1)

2 (−1,4,4)(4,4,−1)
33 2 1 (1,5,−2)(−2,3,3)(3,3,−2)(−2,5,1)

2 (−1,5,2)(2,3,−3)(−3,3,−2)(2,5,−1)
37 1 (1,5,−3)(−3,1,3)(3,5,−1)(−1,5,3)(3,1,−3)(−3,5,1)
40 2 1 (1,6,−1)(−1,6,1)

2 (2,4,−3)(−3,2,3)(3,4,−2)(−2,4,3)(3,2,−3)(−3,4,2)
41 1 − (1,5,−4)(−4,3,2)(2,5,−2)(−2,3,4)(4,5,−1)

(−1,5,4)(4,3,−2)(−2,5,2)(2,3,−4)(−4,5,1)
44 2 1 (1,6,−2)(−2,6,1)

2 (−1,6,2)(2,6,−1)
45 2 1 (1,5,−5)(−5,5,1)

2 (−1,5,5)(5,5,−1)
48 2 1 (1,6,−3)(−3,6,1)

2 (−1,6,3)(3,6,−1)
52 1 − (1,6,−4)(−4,2,3)(3,4,−3)(−3,2,4)(4,6,−1)

(−1,6,4)(4,2,−3)(−3,4,3)(3,2,−4)(−4,6,1)
53 1 − (1,7,−1)(−1,7,1)
56 2 1 (1,6,−5)(−5,4,2)(2,4,−5)(−5,6,1)

2 (−1,6,5)(5,4,−2)(−2,4,5)(5,6,−1)
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∆ h+ # Cycles

57 2 1 (1,7,−2)(−2,5,4)(4,3,−3)(−3,3,4)(4,5,−2)(−2,7,1)
2 (−1,7,2)(2,5,−4)(−4,3,3)(3,3,−4)(−4,5,2)(2,7,−1)

60 4 1 (1,6,−6)(−6,6,1)
2 (−3,6,2)(2,6,−3)
3 (−1,6,6)(6,6,−1)
4 (3,6,−2)(−2,6,3)

61 1 − (1,7,−3)(−3,5,3)(3,7,−1)(−1,7,3)(3,5,−3)(−3,7,1)
65 2 1 (1,7,−4)(−4,1,4)(4,7,−1)(−1,7,4)(4,1,−4)(−4,7,1)

2 (2,5,−5)(−5,5,2)(2,7,−2)(−2,5,5)(5,5,−2)(−2,7,2)
69 2 1 (1,7,−5)(−5,3,3)(3,3,−5)(−5,7,1)

2 (−1,7,5)(5,3,−3)(−3,3,5)(5,7,−1)
73 1 − (1,7,−6)(−6,5,2)(2,7,−3)(−3,5,4)(4,3,−4)(−4,5,3)(3,7,−2)(−2,5,6)(6,7,−1)

(−1,7,6)(6,5,−2)(−2,6,3)(3,5,−4)(−4,3,4)(4,5,−3)(−3,7,2)(2,5,−6)(−6,7,1)
76 2 1 (1,8,−3)(−3,4,5)(5,6,−2)(−2,6,5)(5,4,−3)(−3,8,1)

2 (−1,8,3)(3,4,−5)(−5,6,2)(2,6,−5)(−5,4,3)(3,8,−1)
77 2 1 (1,7,−7)(−7,7,1)

2 (−1,7,7)(7,7,−1)
85 2 1 (1,9,−1)(−1,9,1)

2 (3,7,−3)(−3,5,5)(5,5,−3)(−3,7,3)(3,5,−5)(−5,5,3)
88 2 1 (1,8,−6)(−6,4,3)(3,8,−2)(−2,8,3)(3,4,−6)(−6,8,1)

2 (−1,8,6)(6,4,−3)(−3,8,2)(2,8,−3)(−3,4,6)(6,8,−1)
89 1 − (1,9,−2)(−2,7,5)(5,3,−4)(−4,5,4)(4,3,−5)(−5,7,2)(2,9,−1)

(−1,9,2)(2,7,−5)(−5,3,4)(4,5,−4)(−4,3,5)(5,7,−2)(−2,9,1)
92 2 1 (1,8,−7)(−7,6,2)(2,6,−7)(−7,8,1)

2 (−1,8,7)(7,6,−2)(−2,6,7)(7,8,−1)
93 2 1 (1,9,−3)(−3,9,1)

2 (−1,9,3)(3,9,−1)
97 1 − (1,9,−4)(−4,7,3)(3,5,−6)(−6,7,2)(2,9,−2)(−2,7,6)(6,5,−3)(−3,7,4)(4,9,−1)

(−1,9,4)(4,7,−3)(−3,5,6)(6,7,−2)(−2,9,2)(2,7,−6)(−6,5,3)(3,7,−4)(−4,9,1)

Table 4.1: Gauss-reduced cycles with fundamental ∆ < 100
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Chapter 5

Siegel Reduction (and Proposing a
Siegel Reduction Operator)

The reduction that is least developed is a method of reduction proposed by Siegel. As opposed to the
other methods of reduction that are computed algebraically, Siegel’s suggested method associates to
a quadratic form a semi-circle determined by its roots. A reduced form then is a form whose circle
intersects the fundamental domain, F . We define these criteria more specifically in the following
sections. For simplicity, we will only consider forms of fundamental discriminant ∆ < 100.

1 The Fundamental Domain of the Modular Group

We define the modular group, Γ, to be equal to the projective special linear group PSL2(Z) where

PSL2(Z) = SL2(Z)/{I,−I}.

Equivalently, we can define the modular group to be the group of fractional linear transformations,
from the upper half-plane, H, of complex numbers H = {z = x + yi ∣ y > 0; x, y ∈ R} to itself where

H → H

z ↦ az + b
cz + d

where ad − bc = 1 and a, b, c, d ∈ Z.
The fundamental domain for the modular group is then given by

F = {z ∈H ∣ ∣z∣ > 1 ; ∣Re(z)∣ < 1

2
} .

Graphically, this represents the following shaded region on the complex plane
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Figure 5.1: The fundamental domain (source: inspirehep.net/record/1280946/plots)

2 Siegel-reduced Forms

Let Q = (A,B,C) be a binary quadratic form and define τ1 and τ2 in a way such that

Ax2 +Bxy +Cxy2 = a(x − τ1y)(x − τ2y).

Then τ1 and τ2 are the roots of the equation

Aλ2 +Bλ +C = 0.

In other words

τ1,2 =
−B ±

√
B2 − 4AC

2A
.

We call an indefinite binary quadratic form Siegel-reduced if the semi-circle of diameter τ1, τ2

intersects the F in a non-empty set. Equivalently, if at least one of the“vertices” of F , (−1/2,√3/2)
or (1/2,√3/2), lies in (or on) the semi-circle. The center and radius of the semi-circle corresponding
to the quadratic form (A,B,C) are given by

Center = (− B
2A

,0) and Radius =
√

∆

2∣A∣
.

Proposition 10. A Siegel-reduced form (A,B,C) of discriminant ∆ satisfies the following inequal-
ities:

A2 ≤ ∆

3
, B2 ≤ 4∆

3
, 3AC ≤ ∆

4
.

This proposition shows that the number of reduced forms of a given discriminant is finite. Unfortu-
nately, a form satisfying the above inequalities need not be Siegel-reduced. This fact is illustrated
in the following counter-example.

Example 3. Consider the form (1,7,3) with ∆ = 37

12 ≤ 37

3
, 49 ≤ 148

3
, 9 ≤ 37

4
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Center = (−7

2
,0) , Radius =

√
37

2

Distance from center to
⎛
⎝

1

2
,

√
3

2

⎞
⎠
=
√

16 + 3

4

=
√

67

2
> R

Distance from center to
⎛
⎝
−1

2
,

√
3

2

⎞
⎠
=
√

9 + 3

4

=
√

39

2
> R

Thus the form satisfies the inequalities but is not reduced.

Using this proposition we can create a finite list of possible Siegel-reduced forms and then eliminate
those that do not contain a vertex of F . The following is a table of Siegel-reduced forms with
fundamental discriminant less than 100.
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∆ h+ Forms

5 1 (1,1,−1), (−1,1,1), (1,−1,−1), (−1,−1,1)
8 1 (1,0,−2), (−1,0,2), (1,2,−1), (−1,2,1), (1,−2,−1), (−1,−2,1)
12 2 (1,0,−3), (−1,0,3), (1,2,−2), (−1,2,2), (1,−2,−2), (−1,−2,2), (2,2,−1), (−2,2,1),

(2,−2,−1), (−2,−2,1), (1,4,1), (−1,4,−1), (1,−4,1), (−1,−4,−1)
13 1 (1,1,−3), (−1,1,3), (1,−1,−3), (−1,−1,3), (1,3,−1), (−1,3,1), (1,−3,−1), (−1,−3,1)
17 1 (1,1,−4), (−1,1,4), (1,−1,−4), (−1,−1,4), (2,1,−2), (−2,1,2), (2,−1,−2), (−2,−1,2),

(1,3,−2), (−1,3,2), (1,−3,−2), (−1,−3,2), (2,3,−1), (−2,3,1), (2,−3,−1), (−2,−3,1)
21 2 (1,1,−5), (−1,1,5), (1,−1,−5), (−1,−1,5), (1,3,−3), (−1,3,3), (1,−3,−3), (−1,−3,3),

(1,5,1), (−1,5,−1), (1,−5,1), (−1,−5,−1)
24 2 (1,0,−6), (−1,0,6), (2,0,−3), (−2,0,3), (1,2,−5), (−1,2,5), (1,−2,−5), (−1,−2,5),

(1,4,−2), (−1,4,2), (1,−4,−2), (−1,−4,2), (2,4,−1), (−2,4,1), (2,−4,−1), (−2,−4,1)
28 2 (1,0,−7), (−1,0,7), (1,2,−6), (−1,2,6), (1,−2,−6), (−1,−2,6), (2,2,−3), (−2,2,3),

(2,−2,−3), (−2,−2,3), (3,2,−2), (−3,2,2), (3,−2,−2), (−3,−2,2), (1,4,−3), (−1,4,3),
(1,−4,−3), (−1,−4,3), (3,4,−1), (−3,4,1), (3,−4,−1), (−3,−4,1), (1,6,2), (−1,6,−2),
(1,−6,2), (−1,−6,−2), (2,6,1), (−2,6,−1), (2,−6,1), (−2,−6,−1)

29 1 (1,1,−7), (−1,1,7), (1,−1,−7), (−1,−1,7), (1,3,−5), (−1,3,5), (1,−3,−5), (−1,−3,5),
(1,5,−1), (−1,5,1), (1,−5,−1), (−1,−5,1)

33 2 (1,1,−8), (−1,1,8), (1,−1,−8), (−1,−1,8), (2,1,−4), (−2,1,4), (2,−1,−4), (−2,−1,4),
(1,3,−6), (−1,3,6), (1,−3,−6), (−1,−3,6), (2,3,−3), (−2,3,3), (2,−3,−3), (−2,−3,3),
(3,3,−2), (−3,3,2), (3,−3,−2), (−3,−3,2), (1,5,−2), (−1,5,2), (1,−5,−2), (−1,−5,2),
(2,5,−1), (−2,5,1), (2,−5,−1), (−2,−5,1)

37 1 (1,1,−9), (−1,1,9), (1,−1,−9), (−1,−1,9), (3,1,−3), (−3,1,3), (3,−1,−3), (−3,−1,3),
(1,3,−7), (−1,3,7), (1,−3,−7), (−1,−3,7), (1,5,−3), (−1,5,3), (1,−5,−3), (−1,−5,3),
(3,5,−1), (−3,5,1), (3,−5,−1), (−3,−5,1)

40 2 (1,0,−10), (−1,0,10), (2,0,−5), (−2,0,5), (1,2,−9), (−1,2,9), (1,−2,−9), (−1,−2,9),
(3,2,−3), (−3,2,3), (3,−2,−3), (−3,−2,3), (1,4,−6), (−1,4,6), (1,−4,−6), (−1,−4,6),
(2,4,−3), (−2,4,3), (2,−4,−3), (−2,−4,3), (3,4,−2), (−3,4,2), (3,−4,−2), (−3,−4,2),
(1,6,−1), (−1,6,1), (1,−6,−1), (−1,−6,1)

41 1 (1,1,−10), (−1,1,10), (1,−1,−10), (−1,−1,10), (2,1,−5), (−2,1,5), (2,−1,−5),
(−2,−1,5), (1,3,−8), (−1,3,8), (1,−3,−8), (−1,−3,8), (2,3,−4), (−2,3,4), (2,−3,−4),
(−2,−3,4), (1,5,−4), (−1,5,4), (1,−5,−4), (−1,−5,4), (2,5,−2), (−2,5,2), (2,−5,−2),
(−2,−5,2), (1,7,2), (−1,7,−2), (1,−7,2), (−1,−7,−2), (2,7,1), (−2,7,−1), (2,−7,1),
(−2,−7,−1)

44 2 (1,0,−11), (−1,0,11), (1,2,−10), (−1,2,10), (1,−2,−10), (−1,−2,10), (2,2,−5),
(−2,2,5), (2,−2,−5), (−2,−2,5), (1,4,−7), (−1,4,7), (1,−4,−7), (−1,−4,7), (1,6,−2),
(−1,6,2), (1,−6,−2), (−1,−6,2), (2,6,−1), (−2,6,1), (2,−6,−1), (−2,−6,1)

53 1 (1,1,−13), (−1,1,13), (1,−1,−13), (−1,−1,13), (1,3,−11), (−1,3,11), (1,−3,−11),
(−1,−3,11), (1,5,−7), (−1,5,7), (1,−5,−7), (−1,−5,7), (1,7,−1), (−1,7,1), (1,−7,−1),
(−1,−7,1)
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56 2 (1,0,−14), (−1,0,14), (2,0,−7), (−2,0,7), (1,2,−13), (−1,2,13), (1,−2,−13),
(−1,−2,13), (1,4,−10), (−1,4,10), (1,−4,−10), (−1,−4,10), (2,4,−5), (−2,4,5),
(2,−4,−5), (−2,−4,5), (1,6,−5), (−1,6,5), (1,−6,−5), (−1,−6,5), (1,8,2), (−1,8,−2),
(1,−8,2), (−1,−8,−2), (2,8,1), (−2,8,−1), (2,−8,1), (−2,−8,−1)

57 2 (1,1,−14), (−1,1,14), (1,−1,−14), (−1,−1,14), (2,1,−7), (−2,1,7), (2,−1,−7),
(−2,−1,7), (1,3,−12), (−1,3,12), (1,−3,−12), (−1,−3,12), (2,3,−6), (−2,3,6),
(2,−3,−6), (−2,−3,6), (3,3,−4), (−3,3,4), (3,−3,−4), (−3,−3,4), (4,3,−3), (−4,3,3),
(4,−3,−3), (−4,−3,3), (1,5,−8), (−1,5,8), (1,−5,−8), (−1,−5,8), (2,5,−4), (−2,5,4),
(2,−5,−4), (−2,−5,4), (4,5,−2), (−4,5,2), (4,−5,−2), (−4,−5,2), (1,7,−2), (−1,7,2),
(1,−7,−2), (−1,−7,2), (2,7,−1), (−2,7,1), (2,−7,−1), (−2,−7,1)

60 4 (1,0,−15), (−1,0,15), (3,0,−5), (−3,0,5), (1,2,−14), (−1,2,14), (1,−2,−14),
(−1,−2,14), (2,2,−7), (−2,2,7), (2,−2,−7), (−2,−2,7), (1,4,−11), (−1,4,11),
(1,−4,−11), (−1,−4,11), (1,6,−6), (−1,6,6), (1,−6,−6), (−1,−6,6), (2,6,−3), (−2,6,3),
(2,−6,−3), (−2,−6,3), (3,6,−2), (−3,6,2), (3,−6,−2), (−3,−6,2), (1,8,1), (−1,8,−1),
(1,−8,1), (−1,−8,−1)

61 1 (1,1,−15), (−1,1,15), (1,−1,−15), (−1,−1,15), (3,1,−5), (−3,1,5), (3,−1,−5),
(−3,−1,5), (1,3,−13), (−1,3,13), (1,−3,−13), (−1,−3,13), (1,5,−9), (−1,5,9),
(1,−5,−9), (−1,−5,9), (3,5,−3), (−3,5,3), (3,−5,−3), (−3,−5,3), (1,7,−3), (−1,7,3),
(1,−7,−3), (−1,−7,3), (3,7,−1), (−3,7,1), (3,−7,−1), (−3,−7,1)

65 2 (1,1,−16), (−1,1,16), (1,−1,−16), (−1,−1,16), (2,1,−8), (−2,1,8), (2,−1,−8),
(−2,−1,8), (4,1,−4), (−4,1,4), (4,−1,−4), (−4,−1,4), (1,3,−14), (−1,3,14),
(1,−3,−14), (−1,−3,14), (2,3,−7), (−2,3,7), (2,−3,−7), (−2,−3,7), (1,5,−10),
(−1,5,10), (1,−5,−10), (−1,−5,10), (2,5,−5), (−2,5,5), (2,−5,−5), (−2,−5,5),
(1,7,−4), (−1,7,4), (1,−7,−4), (−1,−7,4), (2,7,−2), (−2,7,2), (2,−7,−2), (−2,−7,2),
(4,7,−1), (−4,7,1), (4,−7,−1), (−4,−7,1), (2,9,2), (−2,9,−2), (2,−9,2), (−2,−9,−2)

69 2 (1,1,−17), (−1,1,17), (1,−1,−17), (−1,−1,17), (1,3,−15), (−1,3,15), (1,−3,−15),
(−1,−3,15), (3,3,−5), (−3,3,5), (3,−3,−5), (−3,−3,5), (1,5,−11), (−1,5,11),
(1,−5,−11), (−1,−5,11), (1,7,−5), (−1,7,5), (1,−7,−5), (−1,−7,5), (1,9,3), (−1,9,−3),
(1,−9,3), (−1,−9,−3), (3,9,1), (−3,9,−1), (3,−9,1), (−3,−9,−1)

73 1 (1,1,−18), (−1,1,18), (1,−1,−18), (−1,−1,18), (2,1,−9), (−2,1,9), (2,−1,−9),
(−2,−1,9), (3,1,−6), (−3,1,6), (3,−1,−6), (−3,−1,6), (1,3,−16), (−1,3,16),
(1,−3,−16), (−1,−3,16), (2,3,−8), (−2,3,8), (2,−3,−8), (−2,−3,8), (4,3,−4), (−4,3,4),
(4,−3,−4), (−4,−3,4), (1,5,−12), (−1,5,12), (1,−5,−12), (−1,−5,12), (2,5,−6),
(−2,5,6), (2,−5,−6), (−2,−5,6), (3,5,−4), (−3,5,4), (3,−5,−4), (−3,−5,4), (4,5,−3),
(−4,5,3), (4,−5,−3), (−4,−5,3), (1,7,−6), (−1,7,6), (1,−7,−6), (−1,−7,6), (2,7,−3),
(−2,7,3), (2,−7,−3), (−2,−7,3), (3,7,−2), (−3,7,2), (3,−7,−2), (−3,−7,2), (1,9,2),
(−1,9,−2), (1,−9,2), (−1,−9,−2), (2,9,1), (−2,9,−1), (2,−9,1), (−2,−9,−1)
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76 2 (1,0,−19), (−1,0,19), (1,2,−18), (−1,2,18), (1,−2,−18), (−1,−2,18), (2,2,−9),
(−2,2,9), (2,−2,−9), (−2,−2,9), (3,2,−6), (−3,2,6), (3,−2,−6), (−3,−2,6), (1,4,−15),
(−1,4,15), (1,−4,−15), (−1,−4,15), (3,4,−5), (−3,4,5), (3,−4,−5), (−3,−4,5),
(5,4,−3), (−5,4,3), (5,−4,−3), (−5,−4,3), (1,6,−10), (−1,6,10), (1,−6,−10),
(−1,−6,10), (2,6,−5), (−2,6,5), (2,−6,−5), (−2,−6,5), (5,6,−2), (−5,6,2), (5,−6,−2),
(−5,−6,2), (1,8,−3), (−1,8,3), (1,−8,−3), (−1,−8,3), (3,8,−1), (−3,8,1), (3,−8,−1),
(−3,−8,1), (2,10,3), (−2,10,−3), (2,−10,3), (−2,−10,−3), (3,10,2), (−3,10,−2),
(3,−10,2), (−3,−10,−2)

77 2 (1,1,−19), (−1,1,19), (1,−1,−19), (−1,−1,19), (1,3,−17), (−1,3,17), (1,−3,−17),
(−1,−3,17), (1,5,−13), (−1,5,13), (1,−5,−13), (−1,−5,13), (1,7,−7), (−1,7,7),
(1,−7,−7), (−1,−7,7), (1,9,1), (−1,9,−1), (1,−9,1), (−1,−9,−1)

85 2 (1,1,−21), (−1,1,21), (1,−1,−21), (−1,−1,21), (3,1,−7), (−3,1,7), (3,−1,−7),
(−3,−1,7), (1,3,−19), (−1,3,19), (1,−3,−19), (−1,−3,19), (1,5,−15), (−1,5,15),
(1,−5,−15), (−1,−5,15), (3,5,−5), (−3,5,5), (3,−5,−5), (−3,−5,5), (5,5,−3),
(−5,5,3), (5,−5,−3), (−5,−5,3), (1,7,−9), (−1,7,9), (1,−7,−9), (−1,−7,9), (3,7,−3),
(−3,7,3), (3,−7,−3), (−3,−7,3), (1,9,−1), (−1,9,1), (1,−9,−1), (−1,−9,1)

88 2 (1,0,−22), (−1,0,22), (2,0,−11), (−2,0,11), (1,2,−21), (−1,2,21), (1,−2,−21),
(−1,−2,21), (3,2,−7), (−3,2,7), (3,−2,−7), (−3,−2,7), (1,4,−18), (−1,4,18),
(1,−4,−18), (−1,−4,18), (2,4,−9), (−2,4,9), (2,−4,−9), (−2,−4,9), (3,4,−6),
(−3,4,6), (3,−4,−6), (−3,−4,6), (1,6,−13), (−1,6,13), (1,−6,−13), (−1,−6,13),
(1,8,−6), (−1,8,6), (1,−8,−6), (−1,−8,6), (2,8,−3), (−2,8,3), (2,−8,−3), (−2,−8,3),
(3,8,−2), (−3,8,2), (3,−8,−2), (−3,−8,2), (1,10,3), (−1,10,−3), (1,−10,3),
(−1,−10,−3), (3,10,1), (−3,10,−1), (3,−10,1), (−3,−10,−1)

89 1 (1,1,−22), (−1,1,22), (1,−1,−22), (−1,−1,22), (2,1,−11), (−2,1,11), (2,−1,−11),
(−2,−1,11), (1,3,−20), (−1,3,20), (1,−3,−20), (−1,−3,20), (2,3,−10), (−2,3,10),
(2,−3,−10), (−2,−3,10), (4,3,−5), (−4,3,5), (4,−3,−5), (−4,−3,5), (5,3,−4),
(−5,3,4), (5,−3,−4), (−5,−3,4), (1,5,−16), (−1,5,16), (1,−5,−16), (−1,−5,16),
(2,5,−8), (−2,5,8), (2,−5,−8), (−2,−5,8), (4,5,−4), (−4,5,4), (4,−5,−4), (−4,−5,4),
(1,7,−10), (−1,7,10), (1,−7,−10), (−1,−7,10), (2,7,−5), (−2,7,5), (2,−7,−5),
(−2,−7,5), (5,7,−2), (−5,7,2), (5,−7,−2), (−5,−7,2), (1,9,−2), (−1,9,2), (1,−9,−2),
(−1,−9,2), (2,9,−1), (−2,9,1), (2,−9,−1), (−2,−9,1)

92 2 (1,0,−23), (−1,0,23), (1,2,−22), (−1,2,22), (1,−2,−22), (−1,−2,22), (2,2,−11),
(−2,2,11), (2,−2,−11), (−2,−2,11), (1,4,−19), (−1,4,19), (1,−4,−19), (−1,−4,19),
(1,6,−14), (−1,6,14), (1,−6,−14), (−1,−6,14), (2,6,−7), (−2,6,7), (2,−6,−7),
(−2,−6,7), (1,8,−7), (−1,8,7), (1,−8,−7), (−1,−8,7), (1,10,2), (−1,10,−2),
(1,−10,2), (−1,−10,−2), (2,10,1), (−2,10,−1), (2,−10,1), (−2,−10,−1)

93 2 (1,1,−23), (−1,1,23), (1,−1,−23), (−1,−1,23), (1,3,−21), (−1,3,21), (1,−3,−21),
(−1,−3,21), (3,3,−7), (−3,3,7), (3,−3,−7), (−3,−3,7), (1,5,−17), (−1,5,17),
(1,−5,−17), (−1,−5,17), (1,7,−11), (−1,7,11), (1,−7,−11), (−1,−7,11), (1,9,−3),
(−1,9,3), (1,−9,−3), (−1,−9,3), (3,9,−1), (−3,9,1), (3,−9,−1), (−3,−9,1)
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∆ h+ Forms

97 1 (1,1,−24), (−1,1,24), (1,−1,−24), (−1,−1,24), (2,1,−12), (−2,1,12), (2,−1,−12),
(−2,−1,12), (3,1,−8), (−3,1,8), (3,−1,−8), (−3,−1,8), (4,1,−6), (−4,1,6),
(4,−1,−6), (−4,−1,6), (1,3,−22), (−1,3,22), (1,−3,−22), (−1,−3,22), (2,3,−11),
(−2,3,11), (2,−3,−11), (−2,−3,11), (1,5,−18), (−1,5,18), (1,−5,−18), (−1,−5,18),
(2,5,−9), (−2,5,9), (2,−5,−9), (−2,−5,9), (3,5,−6), (−3,5,6), (3,−5,−6),
(−3,−5,6), (1,7,−12), (−1,7,12), (1,−7,−12), (−1,−7,12), (2,7,−6), (−2,7,6),
(2,−7,−6), (−2,−7,6), (3,7,−4), (−3,7,4), (3,−7,−4), (−3,−7,4), (4,7,−3), (−4,7,3),
(4,−7,−3), (−4,−7,3), (1,9,−4), (−1,9,4), (1,−9,−4), (−1,−9,4), (2,9,−2), (−2,9,2),
(2,−9,−2), (−2,−9,2), (4,9,−1), (−4,9,1), (4,−9,−1), (−4,−9,1), (2,11,3),
(−2,11,−3), (2,−11,3), (−2,−11,−3), (3,11,2), (−3,11,−2), (3,−11,2), (−3,−11,−2)

Table 5.1: Siegel-reduced forms with fundamental discriminant ∆ < 100
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Proposition 11. If Q = (A,B,C) is a Siegel-reduced binary quadratic form which doesn’t intersect
a vertex then Q∣S = (C,−B,A) is reduced if and only if the semi-circle corresponding to Q contains
only one vertex.

Proof. (⇐): Without loss of generality, assume that the circle corresponding toQ contains (1/2,
√

3/2)
but not (−1/2,

√
3/2) (hence AB > 0). This gives the following inequalities

¿
ÁÁÁÀ(1

2
+ B

2A
)

2

+
⎛
⎝

√
3

2

⎞
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2
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√
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2∣A∣
and
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3

2
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2

>
√
B2 − 4AC

2∣A∣
.

Applying a few algebraic manipulations we have that the two inequalities are equivalent to

2A2 +AB ≤ −2AC and 2A2 −AB > −2AC.

We now split into two cases.
First assume that AC > 0 (so BC < 0). Using the same method as above we have that Q∣S contains
(−1/2,

√
3/2) if it satisfies one of the following inequalities:

2C2 +BC < −2AC, or equivalently ∣C ∣ < −∣A∣ + ∣B∣
2
.

Using the inequality corresponding to Q containing (1/2,
√

3/2) we have

2A2 +AB < −2AC⇔ 2A2 −∣A∣∣B∣ < −2∣A∣∣C ∣

⇔ ∣C ∣ < −∣A∣ + ∣B∣
2
.

Now assume that AC < 0 (BC > 0). We then have that Q∣S contains (1/2,
√

3/2) if

2C2 −BC < −2AC, or equivalently ∣C ∣ < ∣A∣ + ∣B∣
2
.

Using the inequality corresponding to Q not containing (−1/2,
√

3/2) we have

2A2 −AB > −2AC⇔ 2A2 +∣A∣∣B∣ > 2∣A∣∣C ∣

⇔ ∣C ∣ < ∣A∣ + ∣B∣
2

as needed.

3 Permuting Siegel-Reduced Forms

Something that was not explored in Siegel’s paper on quadratic forms was the idea of a reduction
operator like that of Gauss and Zagier. In order to explore the idea of finding such an operator,
the first step is to find a rule that will permute Siegel-reduced forms while preserving equivalence
classes. Because the idea of Siegel-reduction is geometric, we will also take a geometric approach
for a reduction operator.
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Looking at the boundaries of F we can separate it into three sections: the arc of the unit-circle,
the line x = 1/2, and the line x = −1/2. Taking the circle corresponding to the binary quadratic form
(A,B,C), we can look at the “last” place the circle intersects the boundary of F . If it intersects
the line x = 1/2, we shift the circle left 1 unit, if it intersects the line x = −1/2, we shift the circle
right 1 unit, and if it intersects the unit circle, we reflect the circle.
Algebraically, shifting a circle by n units corresponds to acting on the binary quadratic form by
the shift matrix Tn = ( 1 n

0 1 ), where n < 0 represents a right shift and n > 0 represents a left shift.

Reflecting a circle corresponds to acting on the form by the flip operation S = ( 0 −1
1 0 )

The first question that arrises when applying this strategy is if we start on a circle, which direction
do we travel in to determine the last place the circle intersects the fundamental domain? Simply
by convention we will say that the direction of the circle corresponding to (A,B,C) is moving

Left, if sgn(A) = sgn(C) = 1 or sgn(A) ≠ sgn(C) = −1

Right, if sgn(A) = sgn(C) = −1 or sgn(A) ≠ sgn(C) = 1.

We will find later on that direction is preserved by our choice of operator.

Example 4. ∆ = 37

Graphing the Siegel-reduced quadratic forms gives the following circles:

-4 -2 2 4

1

2

3

4

(1,1,-9) (-1,1,9)

(1,-1,-9)(-1,-1,9)

(3,1,-3)(-3,1,3)

(3,-1,-3)(-3,-1,3)

(1,3,-7) (-1,3,7)

(1,-3,-7)(-1,-3,7)

(1,5,-3) (-1,5,3)

(1,-5,-3)(-1,-5,3)

(3,5,-1) (-3,5,1)

(3,-5,-1)(-3,-5,1)

Figure 5.2: Semicircles corresponding to Siegel-reduced forms of discriminant 37

Starting out with the circle corresponding to (1,−5,−3) and applying the rules, we get the following
cycle. The direction above each triple indicates the direction in which we are travelling:

left

(1,−5,−3) SÐ→
right

(−3,5,1) T1Ð→
right

(−3,−1,3) SÐ→
left

(3,1,−3) T−1ÐÐ→
right

(3,−5,−1) SÐ→
right

(−1,5,3) T1Ð→
right

(−1,3,7) T1Ð→

right

(−1,1,9) T1Ð→
right

(−1,−1,9) T1Ð→
right

(−1,−3,7) T1Ð→
right

(−1,−5,3) SÐ→
left

(3,5,−1) T−1ÐÐ→
left

(3,−1,−3) SÐ→
right

(−3,1,3) T1Ð→

right

(−3,−5,1) SÐ→
left

(1,5,−3) T−1ÐÐ→
left

(1,3,−7) T−1ÐÐ→
left

(1,1,−9) T−1ÐÐ→
left

(1,−1,−9) T−1ÐÐ→
left

(1,−3,−7) T−1ÐÐ→
left

(1,−5,−3)
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This idea also preserves equivalence classes since we are always acting by a matrix in PSL2(Z).
This is displayed in the following example.

Example 5. ∆ = 24

The Siegel-reduced forms are the following:

-4 -2 2 4

0.5

1

1.5

2

2.5

3

3.5

(1,0,-6)
(-1,0,6)

(2,0,-3)
(-2,0,3)

(1,2,-5)
(-1,2,5)

(1,-2,-5)
(-1,-2,5)

(1,4,-2)
(-1,4,2)

(1,-4,-2)
(-1,-4,2)

(2,4,-1)
(-2,4,1)

(2,-4,-1)
(-2,-4,1)

Figure 5.3: Semicircles corresponding to Siegel-reduced forms of discriminant 24

There are two equivalence classes for ∆ = 24 and indeed applying the map we get two cycles:

Cycle 1:
left

(1,−4,−2) SÐ→
right

(−2,4,1) T1Ð→
right

(−2,0,3) T1Ð→
right

(−2,−4,1) SÐ→
left

(1,4,−2) T−1ÐÐ→
left

(1,2,−5) T−1ÐÐ→
left

(1,0,−6) T−1ÐÐ→
left

(1,−2,−5) T−1ÐÐ→
left

(1,−4,−2)

Cycle 2:
right

(−1,4,2) T1Ð→
right

(−1,2,5) T1Ð→
right

(−1,0,6) T1Ð→
right

(−1,−2,5) T1Ð→
right

(−1,−4,2) SÐ→
left

(2,4,−1) T−1ÐÐ→
left

(2,0,−3) T−1ÐÐ→ (2,−4,−1) T−1ÐÐ→
right

(−1,4,2)

Although this idea seems to work well for most binary forms of ∆ < 100, a problem arises when a
circle intersects a vertex. The question then becomes, does it count as intersecting the wall, the
circle, both, or does it need a different rule completely? Before exploring these problematic forms,
we provide a table for those that don’t intersect the vertices of F .

Theorem 5. Let ∆ be a discriminant in which none of the reduced forms intersect a vertex of F
and let S∗(∆) denote the set of Siegel-reduced forms of discriminant ∆. The reduction operator
permutes the forms in S∗(∆).

Proof. We know by definition of our operator that it maps S∗ into S∗ so all that is left to show is
that this mapping is surjective.
Let Q ∈ S∗ and travel along its corresponding circle in the reverse direction. This will give a matrix
M that depends on where the circle intersects F and will send Q to Q∣M . Now consider the form
Q∣M ∈ S∗. The operation corresponding to traveling along Q∣M in the proper direction will be M−1

and as such we have (Q∣M)∣M−1 = Q.
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∆ No. Cycle

5 1 (1,−1,−1)(−1,1,1)(−1,−1,1)(1,1,−1)
8 1 (1,−2,−1)(−1,2,1)(−1,0,2)(−1,−2,1)(1,2,−1)(1,0,−2)
12 2 Not applicable

13 1 (1,−3,−1)(−1,3,1)(−1,1,3)(−1,−1,3)(−1,−3,1)(1,3,−1)(1,1,−3)(1,−1,−3)
17 1 (1,−3,−2)(−2,3,1)(−2,−1,2)(2,1,−2)(2,−3,−1)(−1,3,2)(−1,1,4)(−1,−1,4)(−1,−3,2)

(2,3,−1)(2,−1,−2)(−2,1,2)(−2,−3,1)(1,3,−2)(1,1,−4)(1,−1,−4)
21 1 (1,−5,1)(1,5,1)(1,3,−3)(1,1,−5)(1,−1,−5)(1,−3,−3)(1,−5,1)

2 (−1,5,−1)(−1,3,3)(−1,1,5)(−1,−3,3)(−1,−5,−1)
24 1 (1,−4,−2)(−2,4,1)(−2,0,3)(−2,−4,1)(1,4,−2)(1,2,−5)(1,0,−6)(1,−2,−5)

2 (−1,4,2)(−1,2,5)(−1,0,6)(−1,−2,5)(−1,−4,2)(2,4,−1)(2,0,−3)(2,−4,−1)
28 2 Not applicable

29 1 (1,−5,−1)(−1,5,1)(−1,3,5)(−1,1,7)(−1,−1,7)(−1,−3,5)(−1,−5,1)(1,5,−1)(1,3,−5)
(1,1,−7)(1,−3,−5)

33 1 (1,−5,−2)(−2,5,1)(−2,1,4)(−2,−3,3)(3,3,−2)(3,−3,−2)(−2,3,3)(−2,−2,4)(−2,−5,1)
(1,5,−2)(1,3,−6)(1,1,−8)(1,−1,−8)(1,−3,−6)

2 (−1,5,2)(−1,3,6)(−1,1,8)(−1,−1,8)(−1,−3,6)(−1,−5,2)(2,5,−1)(2,2,−4)(2,−3,−3)
(−3,3,2)(−3,−3,2)(2,3,−3)(2,−1,−4)(2,−5,−1)

37 1 (1,−5,−3)(−3,5,1)(−3,−1,3)(3,1,−3)(3,−5,−1)(−1,5,3)(−1,3,7)(−1,1,9)(−1,−1,9)
(−1,−3,7)(−1,−5,3)(3,5,−1)(3,−1,−3)(−3,1,3)(−3,−5,1)(1,5,−3)(1,3,−7)(1,1,−9)
(1,−1,−9)(1,−3,−7)

40 1 (1,−6,−1)(−1,6,1)(−1,4,6)(−1,2,9)(−1,0,10)(−1,−2,9)(−1,−4,6)(−1,−6,1)(1,6,−1)
(1,4,−6)(1,2,−9)(1,0,−10)(1,−2,−9)(1,−4,−6)

2 (2,−4,−3)(−3,4,2)(−3,−2,3)(3,2,−3)(3,−4,−2)(−2,4,3)(−2,0,5)
(−2,−4,3)(3,4,−2)(3,−2,−3)(−3,2,3)(−3,−4,2)(2,4,−3)(2,0,−5)

41 1 (1,−7,2)(2,7,1)(2,3,−4)(2,−1,−5)(2,−5,−2)(−2,5,2)(−2,1,5)(−2,−3,4)(−2,−7,−1)
(−1,7,−2)(−1,5,4)(−1,3,8)(−1,1,10)(−1,−1,10)(−1,−3,8)(−1,−5,4)(−1,−7,−2)
(−2,7,−1)(−2,3,4)(−2,−1,5)(−2,−5,2)(2,5,−2)(2,1,−5)(2,−3,−4)(−1,−7,−2)
(2,−7,1)(1,7,2)(1,5,−4)(1,3,−8)(1,1,−10)(1,−1,−10)(1,−3,−8)(1,−5,−4)

44 1 (1,−6,−2)(−2,6,1)(−2,2,5)(−2,−2,5)(−2,−6,1)(1,6,−2)(1,4,−7)(1,2,−10)(1,0,−11)
(1,−2,−10)(1,−4,−7)

2 (−1,6,2)(−1,4,7)(−1,2,10)(−1,0,11)(−1,−2,10)(−1,−4,7)(−1,−6,2)(2,6,−1)
(2,2,−5)(2,−2,−5)(2,−6,−1)

53 1 (1,−7,−1)(−1,7,1)(−1,5,7)(−1,3,11)(−1,1,13)(−1,−1,13)(−1,−3,11)(−1,−5,7)
(−1,−7,1)(1,7,−1)(1,5,−7)(1,3,−11)(1,1,−13)(1,−1,−13)(1,−3,−11)(1,−5,−7)

56 1 (1,−8,2)(2,8,1)(2,4,−5)(2,0,−7)(2,−4,−5)(2,−8,1)(1,8,2)(1,6,−5)(1,4,−10)
(1,2,−13)(1,0,−14)(1,−2,−13)(1,−4,−10)(1,−6,−5)(1,−8,2)

2 (−1,8,−2)(−1,8,−2)(−1,6,5)(−1,4,10)(−1,2,13)(−1,0,14)(−1,−2,13)(−1,−4,10)
(−1,−6,5)(−1,−8,−2)(−2,8,−1)(−2,4,5)(−2,0,7)(−2,−4,5)(−2,−8,−1)
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∆ No. Cycle

57 1 (1,−7,−2)(−2,7,1)(−2,3,6)(−2,−1,7)(−2,−5,4)(4,5,−2)(4,−3,−3)(−3,3,4)
(−3,−3,4)(4,3,−3)(4,−5,−2)(−2,5,4)(−2,1,7)(−2,−3,6)(−2,−7,1)(1,7,−2)(1,5,−8)
(1,3,−12)(1,1,−14)(1,−1,−14)(1,−3,−12)(1,−5,−8)

2 (−1,7,2)(−1,5,8)(−1,3,12)(−1,1,14)(−1,−1,14)(−1,−3,12)(−1,−5,8)(−1,−7,2)
(2,7,−1)(2,3,−6)(2,−1,−7)(2,−5,−4)(−4,5,2)(−4,−3,3)(3,3,−4)(3,−3,−4)(−4,3,3)
(−4,−5,2)(2,5,−4)(2,1,−7)(2,−3,−6)(2,−7,−1)

60 1 (1,−8,1)(1,8,1)(1,6,−6)(1,4,−11)(1,2,−14)(1,0,−15)(1,−2,−14)(1,−4,−11)
(1,−6,−6)

2 (−1,8,−1)(−1,6,6)(−1,4,11)(−1,2,14)(−1,0,15)(−1,−2,14)(−1,−4,11)(−1,−6,6)
(−1,−8,−1)

3 (2,−6,−3)(−3,6,2)(−3,0,5)(−3,−6,2)(2,6,−3)(2,2,−7)(2,−2,−7)
4 (−2,6,3)(−2,2,7)(−2,−2,7)(−2,−6,3)(3,6,−2)(3,0,−5)(3,−6,−2)

61 1 (1,−7,−3)(−3,7,1)(−3,1,5)(−3,−5,3)(3,5,−3)(3,−1,−5)(3,−7,−1)(−1,7,3)(−1,5,9)
(−1,3,13)(−1,1,15)(−1,−1,−15)(−1,−3,13)(−1,−5,9)(−1,−7,3)(3,7,−1)(3,1,−5)
(3,−5,−3)(−3,5,3)(−3,−1,5)(−3,−7,1)(1,7,−3)(1,5,−9)(1,3,−13)(1,1,−15)
(1,−1,−15)(1,−3,−13)(1,−5,−9)

65 1 (1,−7,−4)(−4,7,1)(−4,−1,4)(4,1,−4)(4,−7,−1)(−1,7,4)(−1,5,10)(−1,3,14)
(−1,1,16)(−1,−1,16)(−1,−3,14)(−1,−5,10)(−1,−7,4)(4,7,−1)(4,−1,−4)(−4,1,4)
(−4,−7,1)(1,7,−4)(1,5,−10)(1,3,−14)(1,1,−16)(1,−1,−16)(1,−3,−14)(1,−5,−10)

2 (2,−9,2)(2,9,2)(2,5,−5)(2,1,−8)(2,−3,−7)(2,−7,−2)(−2,7,2)(−2,3,7)(−2,−1,8)
(−2,−5,5)(−2,−9,−2)(−2,9,−2)(−2,5,5)(−2,1,8)(−2,−3,7)(−2,−7,2)(2,7,−2)
(2,3,−7)(2,−1,−8)(2,−5,−5)

69 1 (1,−9,3)(3,9,1)(3,3,−5)(3,−3,−5)(3,−9,1)(1,9,3)(1,7,−5)(1,5,−11)(1,3,−15)
(1,1,−17)(1,−1,−17)(1,−3,−15)(1,−5,−11)(1,−7,−5)

2 (−1,9,−3)(−1,7,7)(−1,5,11)(−1,3,15)(−1,1,17)(−1,−1,17)(−1,−3,15)(−1,−5,11)
(−1,−7,5)(−1,−9,−3)(−3,9,−1)(−3,3,5)(−3,−3,5)(−3,−9,−1)

73 1 (1,−9,2)(2,9,1)(2,5,−6)(2,1,−9)(2,−3,−8)(2,−7,−3)(−3,7,2)(−3,1,6)(−3,−5,4)
(4,5,−3)(4,−3,−4)(−4,3,4)(−4,−5,3)(3,5,−4)(3,−1,−6)(3,−7,−2)(−2,7,3)(−2,3,8)
(−2,−1,9)(−2,−5,6)(−2,−9,−1)(−1,9,−2)(−1,7,6)(−1,5,12)(−1,3,16)(−1,1,18)
(−1,−1,18)(−1,−3,16)(−1,−5,12)(−1,−7,6)(−1,−9,−2)(−2,9,−1)(−2,5,6)(−2,1,9)
(−2,−3,8)(−2,−7,3)(3,7,−2)(3,1,−6)(3,−5,−4)(−4,5,3)(−4,−3,4)(4,3,−4)
(4,−5,−3)(−3,5,4)(−3,−1,6)(−3,−7,2)(2,7,−3)(2,3,−8)(2,−1,−9)(2,−5,−6)
(2,−9,1)(1,9,2)(1,7,−6)(1,5,−12)(1,3,−16)(1,1,−18)(1,−1,−18)(1,−3,−16)
(1,−5,−12)(1,−7,−6)

76 Not applicable

77 1 (1,−9,1)(1,9,1)(1,7,−7)(1,5,−13)(1,3,−17)(1,1,−19)(1,−1,−19)(1,−3,−17)
(1,−5,−13)(1,−7,−7)

2 (−1,9,−1)(−1,7,7)(−1,5,13)(−1,3,17)(−1,1,19)(−1,−1,19)(−1,−3,17)(−1,−5,13)
(−1,−7,7)(−1,−9,−1)
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∆ No. Cycle

85 1 (1,−9,−1)(−1,9,1)(−1,7,9)(−1,5,15)(−1,3,19)(−1,1,21)(−1,−1,21)(−1,−3,19)
(−1,−5,15)(−1,−7,9)(−1,−9,1)(1,9,−1)(1,7,−9)(1,5,−15)(1,3,−19)(1,1,−21)
(1,−3,−19)(1,−5,−15)(1,−7,−9)(1,−9,−1)

2 (3,−7,−3)(−3,7,3)(−3,1,7)(−3,−5,5)(5,5,−3)(5,−5,−3)(−3,5,5)(−3,−1,7)
(−3,−7,3)(3,7,−3)(3,1,−7)(3,−5,−5)(−5,5,3)(−5,−5,3)(3,5,−5)(3,−1,−7)
(3,−7,−3)

88 1 (1,−10,3)(3,10,1)(3,4,−6)(3,−2,−7)(3,−8,−2)(−2,8,3)(−2,4,9)(−2,0,11)(−2,−4,9)
(−2,−8,3)(3,8,−2)(3,2,−7)(2,−4,−6)(3,−10,1)(1,10,3)(1,8,−6)(1,6,−13)(1,4,−18)
(1,2,−21)(1,0,−22)(1,−2,−21)(1,−4,−18)(1,−6,−13)(1,−8,−6)

2 (−1,10,−3)(−1,8,6)(−1,6,13)(−1,4,18)(−1,2,21)(−1,0,22)(−1,−2,21)(−1,−4,18)
(−1,−6,13)(−1,−8,6)(−1,−10,−3)(−3,10,−1)(−2,4,6)(−3,−2,7)(−3,−8,2)(2,8,−3)
(2,4,−9)(2,0,−11)(2,−4,−9)(2,−8,−3)(−3,8,2)(−3,2,7)(−3,−4,6)(−3,−10,−1)

89 1 (1,−9,−2)(−2,9,1)(−2,5,8)(−2,1,11)(−2,−3,10)(−2,−7,5)(5,7,−2)(5,−3,−4)
(−4,3,5)(−4,−5,4)(4,5,−4)(4,−3,−5)(−5,3,4)(−5,−7,2)(2,7,−5)(2,3,−10)
(2,−1,−11)(2,−5,−8)(2,−9,−1)(−1,9,2)(−1,7,10)(−1,5,16)(−1,3,20)(−1,1,22)
(−1,−1,22)(−1,−3,20)(−1,−5,16)(−1,−7,10)(−1,−9,2)(2,9,−1)(2,5,−8)(2,1,−11)
(2,−3,−10)(2,−7,−5)(−5,7,2)(−5,−3,4)(4,3,−5)(4,−5,−4)(−4,5,4)(−4,−3,5)
(5,3,−4)(5,−7,−2)(−2,7,5)(−2,3,10)(−2,−1,11)(−2,−5,8)(−2,−9,1)(1,9,−2)
(1,7,−10)(1,5,−16)(1,3,−20)(1,1,−22)(1,−1,−22)(1,−3,−20)(1,−5,−16)(1,−7,−10)

92 1 (1,−10,2)(2,10,1)(2,6,−7)(2,2,−11)(2,−2,−11)(2,−6,−7)(2,−10,1)(1,10,2)
(1,8,−7)(1,6,−14)(1,4,−19)(1,2,−22)(1,0,−23)(1,−2,−22)(1,−4,−19)(1,−6,−14)
(1,−8,−7)

2 (−1,10,−2)(−1,8,7)(−1,6,14)(−1,4,19)(−1,2,22)(−1,0,23)(−1,−2,22)(−1,−4,19)
(−1,−6,14)(−1,−8,7)(−1,−10,−2)(−2,10,−1)(−2,6,7)(−2,2,11)(−2,−2,11)
(−2,−6,7)(−2,−10,−1)

93 1 (1,−9,−3)(−3,9,1)(−3,3,7)(−3,−3,7)(−3,−9,1)(1,9,−3)(1,7,−11)(1,5,−17)
(1,3,−21)(1,1,−23)(1,−1,−23)(1,−3,−21)(1,−5,−17)(1,−7,−11)

2 (−1,9,3)(−1,7,11)(−1,5,17)(−1,3,21)(−1,1,23)(−1,−1,23)(−1,−3,21)(−1,−5,17)
(−1,−7,11)(−1,−9,3)(3,9,−1)(3,3,−7)(3,−3,−7)(3,−9,−1)

97 1 (1,−9,−4)(−4,9,1)(−4,1,6)(−4,−7,3)(3,7,−4)(3,1,−8)(3,−5,−6)(3,−11,2)(2,11,3)
(2,7,−6)(2,3,−11)(2,−1,−12)(2,−5,−9)(2,−9,−2)(−2,9,2)(−2,5,9)(−2,1,12)
(−2,−3,11)(−2,−7,6)(−2,−11,−3)(−3,11,−2)(−3,5,6)(−3,−1,8)(−3,−7,4)(4,7,−3)
(4,−1,−6)(4,−9,−1)(−1,9,4)(−1,7,12)(−1,5,18)(−1,3,22)(−1,1,24)(−1,−1,24)
(−1,−3,22)(−1,−5,18)(−1,−7,12)(−1,−9,4)(4,9,−1)(4,1,−6)(4,−7,−3)(−3,7,4)
(−3,1,8)(−3,−5,6)(−3,−11,−2)(−2,11,−3)(−2,7,6)(−2,3,11)(−2,−1,12)(−2,−5,9)
(−2,−9,2)(2,9,−2)(2,5,−9)(2,1,−12)(2,−3,−11)(2,−7,−6)(2,−11,3)(3,11,2)
(3,5,−6)(3,−1,−8)(3,−7,−4)(−4,7,3)(−4,−1,6)(−4,−9,1)(1,9,−4)(1,7,−12)
(1,5,−18)(1,3,−22)(1,1,−24)(1,−1,−24)(1,−3,−22)(1,−5,−18)(1,−7,−12)

Table 5.2: Cycles of Siegel-reduced forms with ∆ < 100
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4 Partitioning the Axes

Our initial proposed solution to this problem of intersecting the vertex was to find a reduction
method that doesn’t necessarily look at intersecting the walls or unit circle, but one that will still
preserve our idea of what to do in the above cases.
Since our definition of a reduced form deals with intersecting the fundamental domain F , we decided
to look at transformations of F using the matrices Tn and S. Keeping our convention on which
direction to move on the circle, we can instead partition the axes into these transformations of F .
The picture looks like the following.

Figure 5.4: Transformations of the fundamental domain where T corresponds to T1. (source:
www.math.uconn.edu/~kconrad/blurbs/grouptheory/SL(2,Z).pdf)

When applying the reduction operator to a form we then look at which transformation of F the
circle enters and apply its inverse. This method preserves our first set of rules because if a form
intersects the wall (not on the vertex), it passes into a shifted version of the fundamental domain. If
the form intersects the unit circle, it will pass into the reflected version of the fundamental domain.
While this method seems good in theory, the application of it doesn’t exactly work out. In many
cases such as the following, the cycle loops back around on itself before hitting all the necessary
quadratic forms.

Example 6. ∆ = 12

The Siegel-reduced forms are given by:
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Figure 5.5: Semicircles corresponding to Siegel-reduced forms of discriminant 12

Starting with circle corresponding to the form (1,−4,1) and applying the above method yields the
following cycle:

(1,−4,1) ST−1 // (1,2,−2) T−1 // (1,0,−3) T−1 // (1,−2,−2)

ST1S

gg
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