Moderi	<u> ΔΙ</u> α	phy	ca F	all	301	خ د	Prot																		_
, todet t	יו הוט	JCOI	u ()H 1	Mano	0	Bool	K: D	υm	mit	t a	nd F	oote	ટ											_
August a	5,2015	_																							
9					_																				
<u>Solving P</u>	<u>olynom</u>	ials f	<u>3y R(</u>	<u>adi</u>	cals	-																			\perp
hiven a q	uadrati	r eniv	ation	Δν	(2+h)	(+r = () (J)e	CON	a fii	nd .	+h0	SQL	けい	08 I	niz	Λ †	ho	Διν	acli	rnt	ir f	hrr	MΠ	ا ما	-
	ts: -b± 2													113 (75(1)	9 '	110	90	uai	uı	10 1	0(1	110	. u	
There is (a symm	etry	in the	e ro	ots.	If yo	u kno	gw (one	ro	0+	the	n yo	UK	nol	υ t	he	oth	ner						_
Example:	ı£ 14.50	15 00	e ro	4 .	then	1-17	15 +4)0 O	the	rr	~~	- ~£	7po	000	ndr	oti	_								_
-AUITIPIC:	11 1112	13 01		,	Incli	1112	13 11		MILE	1 (W	U	TIPE	400	JUI	un	C								+
There is "	Galois	Study	" I.e.	the	stu	dy of	the (Galo	Sic	gro	υp														
				_														_							_
Definition	: The G	alois	group	IS	a pe	ermu	tati or	n gr	oup	Of	the	e ra	ots	of c	po	dyr	nom	IIa	l						\perp
Similarly,	WE CON	COMS	ider (Cub	ic e	auat	ions	Ω y3.	+hx	²+ ſ	Y+	d=n	(ir	וייטוי	/in/	2 r	<i>(</i> ነሀ)	ıre	Λr	h	CO	hic	rr	v42	3
and degr													/ (11	IVOI	V (1) C	j	qυυ	110	uı	Iu	CO	O(C	10		,,
1= 1		1 - 1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																				
for a cub																									_
Start wit	th W, a	dd d	1 and	ם נ) roc ,K3(\																			\dashv
Ø-K'=Ø(3[T]-V	a=V.(,	<u>-) - v</u>	(2(,1361	, ,																		+
can expre						the	UPPE	r fi	eld																
heneralize	3:				C2	Q(เวเชา	ンに	7)																_
	(2) (12) (C3	(i)D	(খ)_																				\perp
O(i)	D(i)(<i>u</i>)																							+
	2 0																								
adding ?		cyclic	c arc	qu	of o	rder	3 (1.e. C	3).	Add	din	q√	- 12	a c	.ycl	iC	qro	υp	of	Orc	der	· 2			
		•	<u> </u>	ľ														·							
If you can		(I·e. W	rite (dou	un ro	ots	'radi	icals	H (2	hen	th	ere	is a	fiel	d r	nac	le f	ror	n :	ste	PS ·	tho) † †	the	
roots lie 1		- 1 - 1013	:14		2 م	ن ا م ا ن	0 014-	00	()			0.0	احاحا												
55 or A	a simp	ot bu	ין יחטר איי	+ 15	NV+	Cyciii built	y gro	on U	JUM JUM	e. r Hin	10t	11 1+ 1 201∧	4.501.	t 3)											+
AS IS	u simp	Jie git	ωρ. (1 10	1101	DOM	OP E	у О	1119	1 711	9 .)	ioci	•											
- undame	ntal Gr	oup (1	Topolo	Y)																				
		•																							
f X 15 a "	nice" to	polog	ical s	spa	ce (e	:x: S',	the c	ni+	Circ	le)	. At	tacr	ned ·	to)	15	the	e fi	onc	lan	ner	Ital	gr	our) TI,	(x)
Dacinitian	· Tha	undar	mont.) YA	hear	0 01 .100	20 1	ho	100	00	N 1/													+
Definition	· ine	onqui	nent(ع ال	quon	me	usure	ZS T	rie	100	ps	n X													+
																					1 7	([

$3)(\frac{1}{n}_{n} + , ($																								
L) Cyclic				e. Cn) sind	e yo	U CC	in to	ike 1	an	d ac	ld It	· to I	1921	fn	tim	es	to	ge	ta	ll e	lem	ient	3
1)(Rx,·,1) 1																								
5) (Z*, •, ı) ı		ZX={±1?	ל																					
6) (4/nzx,•,1)																							
	_																							
mere are o	lso sym	metry	grou	ps																				
examples:	.,					. 1					_					_								
D Sn= {f:{I	,,n5→	{I,,n	j: f 13	ab	viject	ion!	IS C	agro	up C	the	Sym	nme	tric	gro	qu	of (deg	re	e٢	۱) (wit	h t	he	
operation	of fur	ction (compo	ositi	on c	ınd t	he 1	lděnt	ity f	runc	chior	1 W	nich	sen	ds e	ever	ytr)Ih	g 1	וסו	+ se	?IF		
2) More gen 3) The Grou	erally, I	f X IS	any so	et S	x={f	:X→	X : }	is a l	oijec	tior	2 S	ag	roup	s w	ith	func	ctic	n	COY	mp	osi	4,0	n	
3) The Group	D3 (bo	ok nze	s D6)	Stu	dies	the	rota	ition	al a	nd	refle	ctiv	e sy	mn	neti	ries	(ρ)= r	oto	atio	on,			
r=reflection	1) of the	e equil	atera	l tri	anale	2: D3	= {1,	ρ, ρ^2	rrp	7,10	2 1/3													
1) More ger	erally, [n (or 0)	on ac	corc	ling -	to th	e bo	ok)	look	s at	the	rot	atio	nal	Sym	me	trie	25	of:	the	e re	qu	lar	
n-gon and	has Siz	e 2n (1	n rota	tion	s, n'r	efle	tion	$\mathcal{E}_{\mathcal{Z}}$																
4Dn 15 cal	led the	Dihed	ral ar	QUO	of de	gree	n (Cor o	rder	2n)														
40n 15 cal	2x2 real	matri	cesid	eth	1703	9																		
o) (nL2(II)={	2×2 Intec	ier ma	trices:	det	Mez	×= չ։	5133																	
L) can gene	ralize t	nxn i	matric	PS																				
U J																								
Homomorph																								
	nisms																							
romomor pi	<u> isms</u>																							
· ·		biect	bu sti	odv	ina k	10W	ever	vthir	no ir	Her	acts	usi	th 1	H										
·		oject	by sti	ody	ing 1	10W	ever	ythir	ng ir	Her	acts	wi	th 1-	t										
we can stu	dy an o	oject	by sh	ody	ing 1	10W	ever	ythir	ng ir	Her	acts	wi	th 1	+										
we can stu	dy an o	oject	by str	ody	ing 1	10W	ever	ythir	ng ir	nter	acts	wi	th 1-	H										
we can stu	dy an o	oject	by str	ody	ing 1	now	ever	Ythir	ng ir	Her	acts	wi	th 1-	+										
we can stu Example: D	dy an o		3		J				J			wi	th I-	H										
we can stu Example: D we get a m	dy an o	3→S ₃	3		J				J			wi	th 1-	H										
we can stu Example: D we get a m → claim: 4	dy an o	3→S ₃ Hive	3 that	- IS	such	tha	ት ሦ((a·b)	= 400	λ)Ψ((b)					·Va	£(\)		= \		\he			
we can stu Example: D we get a m > claim: 4 > Proof	dy an o	3→S3 Hive Is the	that	- Is	such	tha tati	ት ሦ((a·b)	= 400	λ)Ψ((b)				(V2)=	=V2,	+(\u00b4	13)	= V ₃	3 L	she	re		
we can stu Example: D we get a m → claim: Y L> Proof V(1/V2, a	dy an o	3→S3 Hive Is the	that trivio	- Is Il pe	such	tha tati	t 41	(a-b)	= 4(a	a)Ψ(=1),	ib) ther	n f(۷۰)=۷	/1, f (
we can stu Example: D we get a m > claim: 9 -> Proof V, V2, a V, and	dy an o	3→S3 Hive Is the Ire position	that trivio	- Is Il pe vec	such tors	tha tation	t 40	(a-b) .i.e. <	= 4(a	a) (4) =1),	Ther	n fü	۷٬)=۷	/1, f (
we can stu Example: D we get a m → claim: 9 → Proof V(1/V2, a	dy an o	3→S3 Hive Is the Ire position	that trivio	- Is Il pe vec	such tors	tha tation	t 40	(a-b) .i.e. <	= 4(a	a) (4) =1),	Ther	n fü	۷٬)=۷	/1, f (
we can stu Example: D we get a m Claim: 9 Proof VI,V2,a VI and We know #	dy an o	3→S3 Hive Is the Ire pos Is basis	that trivio sition of 12 3=3!=	- IS II pe vec 2º Or 6. Th	such tors tors	tha tations is connected	t Y((a-b) i.e. c ear t s inj	= 4(a P(f): rans ectiv	1) \(\psi \) \(\psi	16) ther ma- + # 0	n f(thion)	vi)=V . Thu	/1, f())s f	`(vi`) = V	i ai	nd	SC) f =	: ıd			
Ne can stu Example: D Ne get a m Claim: 9 Proof V1/V2, a V1 and Ne know # Definition:	dy an of a part of the state of	3→S ₃ Hive IS the Ire pose It basis Ind #S	that trivionsition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s	thation is considered to the construction of t	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	
we can stu Example: D Ne get a m Claim: P Proof VIV2, a VI and We know # Definition: P(ab) = P(a	dy an of a part of the state of	3→S3 Hive Is the Ire posis Ind #S Wo gri	that trivio sition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s nd G	thations of the state of the st	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	
Ne can stu Example: D Ne get a m Claim: P Proof VIV2, a VI and Ne know # Definition: P(ab) = Y(a	dy an of a part of the state of	3→S3 Hive Is the Ire posis Ind #S Wo gri	that trivio sition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s nd G	thations of the state of the st	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	
Ne can stu Example: D Ne get a m Claim: P Proof VIV2, a VI and Ne know # Definition: P(ab) = Y(a	dy an of a part of the state of	3→S3 Hive Is the Ire posis Ind #S Wo gri	that trivio sition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s nd G	thations of the state of the st	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	
Ne can stu Example: D Ne get a m Claim: P Proof VIV2, a VI and Ne know # Definition: P(ab) = Y(a	dy an of a part of the state of	3→S3 Hive Is the Ire posis Ind #S Wo gri	that trivio sition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s nd G	thations of the state of the st	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	
Ne can stu Example: D Ne get a m Claim: 9 Proof V1/V2, a V1 and Ne know # Definition:	dy an of a part of the state of	3→S3 Hive Is the Ire posis Ind #S Wo gri	that trivio sition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s nd G	thations of the state of the st	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	
we can stu Example: D Ne get a m → claim: P → Proof V, V2, a V, and Ne know # Definition: P(ab) = Y(a	dy an of a part of the state of	3→S3 Hive Is the Ire posis Ind #S Wo gri	that trivio sition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s nd G	thations of the state of the st	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	
Ne can stu Example: D Ne get a m Claim: P Proof VIV2, a VI and Ne know # Definition: P(ab) = Y(a	dy an of a part of the state of	3→S3 Hive Is the Ire posis Ind #S Wo gri	that trivio sition of 12 3=3!=	- Is Vec 2º Or 6. Th	such tors nd f nus s nd G	thations of the state of the st	t 4(on (lline Yı	(a-b) Li.e. c ear t s inj	= 4(a P(f): rans ectiv	1) 4(=1), sfor ve =	ther mare # 0	n f() tion 03=6	vi)=V . Thu	fun	Ctic)=V	i α1 φ: c	nd	Sc →G	f= ' S.	: Id	ın	D3	

DAC'C, '3	ᡩ᠄ᢗᠬᢇ	G'																									+
	g⊢	• e																									
5 41s the€	trivial	ho	mon	nor	ohi	sm)																				I
2) Y: D ₃ → S ₃																											1
3) 4:Dn→Sn	for r	124	is n	ot s	surj	ect	ive	20	1+	is n	ot (an	120	morg	ohisi	m											1
4) 4:D3→G	12 (IR))																									1
$\varphi(\rho) = \begin{pmatrix} -1/2 \\ \sqrt{3}/4 \end{pmatrix}$	2 -1	3/2 \ 12 /	4	P(r):	(-))	1)	φ	<u>(1)</u>	=(0	0																
5)There is i	no na	ntri	vial	hor	nor	moi	rphi	ism	ነ ዋ	: S3-	→ C	3															
6) 4:1R(over X		on)	→ 17)°°(ove	rγ →∈		ipli	cati	ion)																	+
is an isc	morph	ism	sin	ce :	X+Y	ι	→ ex	44=	exe	e ^y ai	nd	4:1	5,0	ا ا	R	ıs	an	ın	vers	e ho	omo	om	or	ohi.	sm		
													(logx												Ĺ
log(xy):																											
7) det GLn(1	R)→1R	*=1P	ا ö۱	sal	non	nor	nor	phis	sm	sinc	e d	let(AB)	=de	t(A)(tsk	CB)									_
8) f: (n→ cn	1S Q	hor	MOM	orpl	nisi	m <	(=)	Co 1	SQ	ıbeli	an																_
De es silis u	· 15 (0.	Ca-	(2) 7	r. (2	-> (٦ II	Ore	ho	mr	\mo	roh	ism	15,	ther	1 4º	φ:	Cn =	? (2	ı ıs	als	00	hr			^	hism	+
Proposition)· T·	CI	91	T. CI		- 1	ui c	- 10	1110	יטוווכ	ייקי		.0,	11101	•	+	-	-	- 19		-	11/	SMI	om	orp		7
Definition: It an autor	A hom	om	orpk	nism	γ (φ:	:G-	→ C ₁	IS	Cal	led	an (end	lon	norp	hisn	1-1	φ	IS	also	ar) ISO	om	Orp	ohis	sm,	call	1
Definition: It an auton	A nom	nom sm ms	orpr	nism	η φ: Jino	G-	→ C1	IS	Cal	led	an (end	lon	norp	hisn	1-1	φ	IS	also	ar) ISO	om	Orp	ohis	sm,	call	1
Definition: It an autor Use automo that have	A nom norphi orphisi differ	nom sm ms ent	orph in st	nism Tudy Omc	η φ: Jino prph	:G- Hr	→ Cn ne S ns	IS Hru	call octu	led over	an of a	end a gr	ou	norp	hisn	1-1	φ	IS	also	ar) ISO	om	Orp	ohis	sm,	call	1
Proposition: Definition: It an autor Use automothat have Example: If	A nom norphisi orphisi diffen	nom sno ms ent abel	orph in st auto	nism rudy omc	jing prph	th nisk	→ Cn ne s ns	is tru	call octu	ore o	an of a	end a gr	n	p. Yo	hish u ca	n I	- φ	is le (grou	o ar	0 S(th)	nort	sar	ne	call	1
Definition: It an autom Use automothat have Example: If Proposition	A nom norphisi orphisi diffen : (n is a	ms ent abel	orph in st auto	nism rudy omc	jing prph	th nisk	→ Cn ne s ns	is tru	call octu	ore o	an of a	end a gr	n	p. Yo	hish u ca	n I	- φ	is le (grou	o ar	0 S(th)	nort	sar	ne	call	1
Definition: It an autor Use automo Hhot have Example: If Proposition function co	A nome norphise difference in the control of the co	ms ent abel	orph auto	nism rudy omc squ	ying ying var	G- Hist	→ Gnessms	is Hru	call	led one of a gr	an and	end a gr	n , de	o. Yo	hisn v ca	n H	nav	is ie (grou	o ar	of	th out	p u	sar	me er	call	1
Definition: It an autor Use automothat have Example: If Proposition function co	A nome norphise difference is the mposition of the mposit	ms ent settion	orph auto (an of	rudy omc	ying ying var	ing	→ Gane Sams	is Hru ms	call octu	led one of a gr	an corprove	end a gr nisr o G	n n ude	p. Yo	nish v ca	n I	P φ	is le (also	o ar	of of	th out	ne:	ohis sar	er o	Size	1
Definition: It an autor Use automothot have Example: If Proposition co L> Proof: Automomor	A nome norphise difference in the control of the co	ms ent settion	ian single automains	nism rudy squauti	ying prph	the straight of the straight o	→ Ga MS MS: MSinkin	is Hru ms ms	calloctu of (bij	led lomo a gr jecti	on ons	end a gr nisr b G the	n, de	enot	nish v co	n I	P φ nav	is is in the contract of the c	also grou orm	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothat have Example: If Proposition function co	A nome norphise difference to us a mposition of the phism	ms ent set tion sin	ian single automains	nism rudy squauti	ying prph	the straight of the straight o	→ Ga MS MS: MSinkin	is Hru ms ms	calloctu of (bij	led lomo a gr jecti	on ons	end a gr nisr b G the	n, de	enot	nish v co	n I	P φ nav	is is in the contract of the c	also grou orm	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothat have Example: If Proposition co L> Proof: Automomor automom	A nom norphisi orphisi diffen : Ch is a mposi h(G) a phism phism	ms ent	orph auto (an ains s a l	squauti	ying ying yar yar yar yar	G- Hhisk ing orpl	→ Gne S ms IS (Cnisr nisr nisr phis	is Hru ms ms m.:	call of (bij	led lome a gr jecti nilar bije	and orph ons lly, t	end a gr nism o G	n , de con	enot	nish o ca -ed to 1t: sitic erse	Autof	nav -CG -: T) of	is ie (orm com	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothat have Example: If Proposition Function co Is Proof: Automomor automom	A nom norphisi orphisi diffen : Ch is a mposi h(G) a phism phism	ms ent	orph auto (an ains s a l	squauti	ying ying yar yar yar yar	G- Hhisk ing orpl	→ Gne S ms IS (Cnisr nisr nisr phis	is Hru ms ms m.:	call of (bij	led lome a gr jecti nilar bije	and orph ons lly, t	end a gr nism o G	n , de con	enot	nish o ca -ed to 1t: sitic erse	Autof	nav -CG -: T) of	is ie (orm com	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothot have Example: If Proposition function co by Proof: Au homomor automor automor Definition:	A nome norphise difference is the mposition of the phism on the phism of the phism	ms ent label set tion contribis i	ian sins s a l	squautras iscomo	ying ying yar yar yar yar	ing orplionp	→ G ne s ns is (nisr nisr nisr set	is Hru an (ms ms h to	call of (bij IS	led ore of the long of the left of the lef	and of a ons ly, t	end a gr nism o G	n de contra qui	enote of the property of the p	nish o ca ed to it: sitic erse	Autof	nav -CG -CG	is ie (orm com	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothot have Example: If Proposition function co by Proof: Au homomor automor automor Definition:	A nome norphise difference is the mposition of the phism on the phism of the phism	ms ent label set tion contribis i	ian sins s a l	squautras iscomo	ying ying yar yar yar yar	ing orplionphorn	→ G ne s ns is (nisr nisr nisr set	Is Hru an (ms ms h to	call end of (bij sim	led lome a gr jecti nilar bije	and of a ons ly, t	end a gr nism o G	n de contra qui	enote of the property of the p	nish o ca ed to it: sitic erse	Autof	nav -CG -CG	is ie (orm com	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothat have Example: If Proposition Co Ly Proof: Automore Automore Definition: Example: Le	A nome norphise difference is the mposition of the mposit	ms ent abel set tion on in its 1. Sin and	orph in st auto ian ian ains s a l ice (squauto sspin	jing prph Dar Dmo	ing orplion	→ changes and selection of the selectio	Is Hru an (ms ms h to	call end of (bij sim	led ore of the long of the left of the lef	and of a ons ly, t	end a gr nism o G	n de contra qui	enote of the property of the p	nish o ca ed to it: sitic erse	Autof	nav -CG -CG	is ie (orm com	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothat have Example: If Proposition Function Co Proof: Automore Automore Definition: Example: Le	A nome norphise difference is a second property of the control of	ms ent abel set tion is in an an an an	orph in st auto cof n ains s a l ce o	squauto sspinom	jing promo omo omo	ing ing orplions	→ Gane Sens Is (Conserved to the Sense) Sense	ns ms ms ms ms	calloctu of (bij IS	led lorno a gr jecti nilar bijec	and orph ons ly, to ctiv	end a gr hisr b G the	n com con he	p. Yo	ed to the sition	Autof	nav -CG -CG	is ie (orm com	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothot have Example: If Proposition Function co Proof: Automore Automore Definition: Example: Le: L> Claim: C L> Proof	A nome norphise difference is a second of the back of	norm sm sm ms ent abel set tion sin and and	ian stantant de control	squauti s Isconomics fine	jino prpr Dar Dar Dar Dar Dar Dar Dar Dar Dar Da	ing orplionphor	→ Change Same Same Same Same Same Same Same Sam	is tru an an an sm to an an an an an an an an an an	call of (bij) IS	led ore of the long of the left of the lef	and of a ons forr forr Ca lied	end a gr nism o G the re, t	n de nju	enote of the coup	nish o ca ed to it: sitic erse	Autofath	nav	is ie (also orm com	pos o	of	out out ph	p u of	onis sar und two	me er	Size	1
Definition: It an autor Use automothat have Example: If Proposition Function co La proof: Automore automore Automore Definition: Example: Le La claim: C La proof let be	A nome norphise difference is a second property of the control of	norm sm ms ent abel set tion sin and ale ent	orphorphorphorphorphorphorphorphorphorph	squautras isconomo	jino prph par pmo pmo pmo pmo pmo pmo pmo pmo pmo pmo	ing orplions nor nor	→ Gane Sons Is (nish nish sel > Con son son son son son son son	ns ms ms h to	calloctu of (bij Sim IS	led ore of long a graph of lar bijed elf for a	onsorph consily, to the consilied	end a gr nism o G the e, t	n de con con he nju	enote of the post	ed to 1to sition of the control of t	Autor	nav	is ie (orm com	o ar	of sition morphis	out out out ph m	p u of ism	sar two	er o IS	Size	1

```
Definition: An automorphism of the form 4(g)=h'qh, where help is fixed, is called an inner
automorphism
Example: Ca is an inner automorphism
Example: C=$3, h=(12), h=(12)
h(1)h-1=1 4h
(12)(12)(12)=(12)
                      (12)(23)(12)=(13)
                                               (12)(132)(12)=(123)
(12)(13)(12)=(23)
                      (12)(123)(12)=(132)
The inner automorphisms of an abelian group map an element to itself
Definition: A subset HSG, where G is a group, is a subgroup, denoted HSG, if (H, · | HxH, e) is
itself a group
4) Le 14 is a subset that is itself a group with respect to the same binary operation and identity
  as G
The Subgroup Test: HSG is a subgroup if and only if
 i) H = Ø
 (i) Ya, beh, abeH { 1.e. Ya, beH a.b'eH
iii) YaeH, a-1eH
4 If G is finite, you only need the first two
Example: YG, £13 < G is a subgroup denoted 1 (or 0 if G is additive)
1 is called the trivial subgroup
Similarly, G = G
is these are the only two subsets that are subgroups VG. Further, there are groups in which these
  are the only subgroups
Definition: If H=G and H=G (i.e. H is a proper subset of G) then H is a proper subgroup
5 Typically you would ask for any non-trivial proper subgroups
Examples:
 1) Aut(6) < SG
 2) The inner automorphisms of a group is denoted Inn(4)
  b claim: Inn (G) = Aut (G)
    Proof:
       i) Yaea, Caelnn(G)
       ii) let (g, Cn & Inn (G), then cg > Ch = (gn since g(nah-1)g-1= (gn) a (gn)-1
      iii) if Cae Inn (G) then Ca'= Car & Inn (G)
3) Z & R as additive groups
4) SLn(IR) & Giln(IR)
  > Definition: SLn(R)= { real nxn matrices m: det(m)=13
   Proof:
     i) det (I) = 1 € SLn(IR)
     ii) let ABE SLh(1R), then det(AB)=det(A)det(B)=1
     (ii) let Ae SLn (IR) then det (A-1)= (det A) = 1
We can also get subgroups from homomorphisms. There are two important subgroups: the image
of a homomorphism and the Kernel of a homomorphism
```

```
Definition: If 4:G-G' is a group homomorphism, the image of 4 denoted im(4):= {4(g):ge G3
الله (ع) خ ه ا
Motivation for the kernel: Given a homomorphism 4:6→61, you get an equivalence relation on the
domain, G. For a, beG, define a~b if 4(a)=4(b). Denote the set of equivalence classes by
G/~= { (a) a ε G } where [a] = {b ε G : b ~ a }. Then \( \Pi \) induces a bijection \( \overline{\Pi} : \Gamma / \sigma \) im(\( \pi \))
(bijective from the definition of equivalence classes). The right hand side, Im (4), is a group so the
bijection induces a group structure on the left hand side, G/~.
Another description of ~:
claim: I a subgroup KEG such that a~b if and only if ak=bk (where ak= sak: kek3) if and only if
a'bek. In particular, [a]=ak. ak=bk=> ykek, ak=bk' for k'ek=> kk'-'=a'b
Definition: The Kernel of \varphi, denoted ker(\varphi), is the above k. i.e. [1]=1k=k=\varphi^{-1}(1)
Proposition: Ker (4)≤G

    Ker(Ψ)=Ψ⁻¹({e3})

More generally, if H'≤G' then 9+(H')≤G (the converse is not true)
Definition: [a]=ak is called a (left) coset of k and G/~ is denoted G/k
More generally, if H \( \) define a \( \) if and only if a \( \) b \( \) if and only if a \( \) = \( \) H.
is the equivalence classes are called left cosets and the set of them is denoted G/H
Question: For which H&G does (aH) (bH)= (a.b) H and e=1H make G/H into a group?
Abstract answer: G/H is a group if and only if H is the kernel of some homomorphism 4
□ proof:
 (<=) done previously
  (=>) if G/H is a group, define 4: G-G/H. This is by definition a homomorphism. Ker(4)=H
                                     a \mapsto aH
concrete answer: when H is normal
Definition: H \leq G is called a normal subgroup denoted, H \triangleq G, if \forall g \in H and \exists H (equivalently g H g^{-1} \in H)
where gHg-1= {ghg-1: heH}
Theorem: H is a Kernel if and only if H=G
-> proof: (exercise)
  1-> you have to show that the multiplication is well-defined i.e. consider whether aH=a'H and
    bH=b'H means abH=a'b'H making aH bH=abH is well-defined
Definition: The index of H in G is [G:H]=# G/H i.e. the number of left cosets of H
Example: G=S3, H= {1, (13)3. 15 H & G?
(12) (13) (12) 1= (23) & H => H IS not normal. Similarly any H= {1, (ij)} Is not normal. There is only one
non-trivial proper subgroup of S3. That IS, N= E1, (123), (132)3
The first isomorphism theorem: If 4: G→G' is a homomorphism then 4 induces an isomorphism
\overline{\Psi}: G/ker(\Psi) \xrightarrow{\sim} Im(\Psi)
```

Example: what is GLn (IR)/SLn(IR)? Define 4: GLn(R) -> G' such that ker(4)= sln(R), then you can identify the quotient with the im(4). Use det Gln(R) → Rx (1.e. the determinant) then ker 4= SLn(R) so GLn(R)/SLn(R) = Im(det)= Rx Since if re IR + then det ((r))=r Example: Is there a non-trivial homomorphism from S₃ -> C₃? since the only non-trivial proper normal subgroup of S3 15 N= E1, (123), (132)3, we need ker (4)=N what is G/N? Is it C3? C3 has no proper non-trivial subgroups but G/N only has two elements so it cannot be C3. September 1, 2017 Chroup Actions Definition: Let G be a group and X be a set. A (left) action of G on X is a function $G \times X \longrightarrow X$ $(g, \chi) \mapsto g \circ \chi$ where $g \cdot x$ is "a acting on x" satisfying: i) 1 • x = x ∀ x ∈ X (i) \di, q2 \(\mathreag{C1}\) and \(\frac{1}{2} \in \chi) = (q1 \, q2) \cdot \chi) The set x is called a G-set. We say G acts on x, denoted GC X Examples: 1) $G=S_n$ $x=\{1,2,...,n\}$, then $\sigma \cdot x = \sigma(x)$ 2) C=Dn, X=regular n-gon Remark: For geGC X, the map $\sigma_g: X \to X$ is in Sx (the group of bijections from X to itself) 4) Proof: Claim: (og) = og-1 L> Proof: $(\sigma_q \circ \sigma_{q-1})(x) = q \circ (q^1 \circ x) = (q \cdot q^1) \circ x = 1 \circ x = x$. Similarly, $(\sigma_{q^1} \circ \sigma_{q})(x) = x \square$ The data of a group action $G \times X \longrightarrow X$ is the same as giving a nomomorphism $\varphi: G \longrightarrow S_X$ $g \mapsto \sigma_{\mathbf{q}}$ Definition: If ch is a group and x is a set, a homomorphism $G \rightarrow Sx$ is called a permutation representation of G 14 gives a concrete representation of G Example: Dn -> Sn by labelling the vertices Cayley's Theorem: Every group is a permutation group > Proof: G. G. G. by left multiplication with g.h=gh. This gives a map G→SG and multiplication by G is a bijection 🖾 Definition: An action GC x is called faithful if $G \rightarrow Sx$ is injective, we say that the map $G \rightarrow Sx$ is a faithful representation of G. The Kernel of the action is ker (GC X) = Ker (G -> SX) is since the kernel of a homomorphism is trivial if and only if the map is injective, the action GCX is faithful if the kernel is trivial

```
Examples:
1) Cayley's Theorem gives us that GCG by left multiplication is faithful
2) Dn→Sn, n≥3 is faithful where Dn is acting on the n vertices of the regular n-gon.
  4 on assignment we saw this is not true for n=2
3) G=S3, X= £1,2,33 If a=(12) eG, (12) • 3=3 but (12) • 1= 2 + 1 SO GCX is faithful
Definition: ge G acts trivially on xe x if g x=x. Similarly G acts trivially on x if g x= x yge G yxex
Example: G=S3, X={1,2,33. (12) acts trivially on 3
Faithful means the only element that acts trivially on every XEX IS 16 G
Definition: If GC X, x & X. The stabilizer of x (in G) is stab G(x) = {g & G : g • x = x } i.e. the ged that acts
trivially on x (also denoted Gx). The orbit of x (under G) is Gx= Eg·x: geG3 (also denoted orb G(x))
Example: G= S3 @ [1,2,3]
                          Orbs3 (3)= {1,2,3}= X
Stabs_3(3) = \{1, (12)\}
Stabs3 (2)= {1, (13)}
                          Orbs3 (2)= X
Stab s3 (1) = {1, (23)}
                          Orb S3 (1) = X
4 This shows that elements can have stabilizers but still have the action be faithful
Proposition: Ker (GCX) = 1 Stab (X)
Proposition:
i) YXEX, StabG(x) & G (and OrbG(x) is a G-set)
  1-> In fact, orba(x) is the smallest set containing x on which a acts
ii) The orbits of the action partition X
   5 Thus any two orbits that share an element are equal
iii) If Gx=Gx' then stab G(x) and stab G(x') are conjugate (i.e. 7 ges such that gstab G(x) q'= stab G(x')
   5 since conjugation is a bijection, this means they're isomorphic
5 Proof:
   i) \forall x, 1 = Staba(x) so Staba(x) \neq \emptyset. If Q,Q' \in Staba(x) \Rightarrow (QQ') \cdot x = Q \cdot (Q' \cdot x) = Q \cdot x = x \Rightarrow QQ' \in Staba(x) so
      staba(x) is closed under multiplication. If ge staba(x), then gox=x and go(gox)=go(x+>
      (q'q) \cdot x = q' \cdot x = x = q' \cdot x \text{ so } q' \in \text{Stab}_{G}(x)
  ii) to show the equivalence classes are an equivalence relation. Define x x if I ge G such that
     x'=q·x. Our claim is that this is an equivalence relation and the equivalence classes are the
     orbits. Since the equivalence classes of any equivalence relation partition the set.
    reflexive: x=1 - x so x~x
    symmetric: if x'=g \cdot x then g' \cdot x' = x so x' \sim x if and only if x \sim x'
    transitive: If x'=g \cdot x and x''=h \cdot x' then x''=hg \cdot x so x \sim x', x' \sim x'' \Rightarrow x \sim x'' and
    [x]= {x'e X: x'~x}= {q.x: qe6}= Gx
 iii) If x'=g \cdot x and hestabe(x) then h \cdot x = x so x=g' \cdot x and hg' \cdot x'=g' \cdot x' \Rightarrow ghg' \cdot x' = x' so he stabe(x)
     If and only if angle stab a(x1)
Example: we saw for S3 C E1,2,33 there is one orbit so the stabilizers are all conjugate (i.e. isomorphic)
```

rbit-	ctol	oili	301	c TI	her	roi	w.	12 (٦ (٧	X Ov	2d 4	Y F	χ -	the	n	#(\= #	:2+	1ho	ر م	1).#	(-)	,										
> Pro																																	
α=	1.0	,	- 1 C	•	Λ.	γ -		, •	n	• 1	→ •	u		01		, ,	· GI	10	0 [(, 31	ч	GC	^/										
γ=	Χ.	ν-		•	0.7	<u>^</u>	\	, •	- 9	2 • X -	•						sin	(0 -	Hh o	c+/	abil	120	rc	20	200	<u>ر</u>	nii	n+ /	ara	(D	nju	001	-
Λ-	χ.	~		•	910	x- 0	-1	٠,٠									to	LE Lha	0 ct	ahi	lia	Orc	12	2 ~	Luc	7)	100	11 0	ure		טניו	gai	
^	V2	^_		•	9,	02 Y	 -	١,									10	THE	. 01	uDi	112	CIS	UT	7									
A-	03	χ	ر م م ا	0 10	9,1	939	110			0,01	اء م		· The		1.110	1.0		٠				0.0			l	01-				امدها		01-	-1
this													. tre	e n	UYY	106	ro	T T	OW	en	em	err	75	13 1	ne	212	: E (DT 1	me	Ork	01+	unc	ַ
me	. CO	om	n ı	S H	ne	215	e 0	t tr	1e :	stab	01112	er		20		_						1.1	_										
→ Pro	0+:	2: 16	2+ 1	x'e	<u>(</u> 3χ	ar	a	נזא,	χ' ⁼	ige	ភៈ ០	J•χ :	= X 1.) (SO	נזא,	χ=((אֵר.	+h	en	(j=	x'ec	ıχ	7 %,?	(1								
(Eve																													nt s	SO .	the	y o	re
disjo	oint	-) =	>#	G =	∑ %'€	# (6%	٦χ,	χı S	02	if u	e s	sho	w	AV	(', =	Ħ G	χ,χ'	- #	· St(ab	G(X	() #	her	w	e'r	e 0	lon	e.					
Cla	im	:	ive	n c	'E	Gχ	χ',	the	5 04	her	- e	lem	en	ts	ar	e (א'ע	as	ð r	un	s c	ove	rs	tab	G (1	()							
L> F	ro	:	(to	sh	SW	th	ere	2 18	a	bije	ect	ior)				, –																
	Def	ine	f	: St	ab	G(X)-	→ (7χ,	χ′ (wh	ere	Q'	IS	fi)	cec	1																
			Ť		8-			$\rightarrow c$	الا			Ĭ	U																				
	The	e f	บทต	tic	n	Gax	χ'-	\rightarrow	Sta	ხც(χ)	IS	an	in	ver	se	of	f 1	\mathbf{Z}														
						h	<u> </u>	→ ([g¹)	h'							- •																
Applic	ati	on	: L0	agr	anc	e's	3 TI	hec	rer	n: H	fН	≤ (h	th	en	#((ก=	ĦΗ·	[c-	:H]	1.e	. H	ne s	Siz	e o	f	ı sı	bg	rou	p (ivit	des	3 #	ne
size c	yf †	he	gro	pup																													
→ Proc																																	
Stat	ე ც (1· F)={	ge	Gil	gH:	Η?	}=H	an	d O	rb	5(1	.· H) = (5/H	S	ince	9	H=(g•(1: H) ∀	g =	>#	G=:	ŧΗ	#G	/н					
Sept Theore								X +	her	e is	ar	ati	ora	l b	iied	:tic	on ¹	F: G	\ S [.]	tab	G (1	x)-	→ ()rb	_G (ე	() (.F01	r In	sta	nce	ıf	C1 1	S
finit																													,,,,				
→Pro																							.,										
wel	1-4	efii	ner	: It	10	1=0	ľΗ	the	2n	ah=	0,1	n' f	or Or	SU	MP	h	ı.h'	EН															
=> (i u Ihi	h'\	= 0	, ,	ال	\ \ \	Hz	O'L	山	nen	יה ו	= /	h"	fo	., b	, י ויב	H U	he	- ۲	Hm	+ t	(<u> </u>	1)=	flo	Нλ								
tlu	リン	ייי ה'א=	N =	nh'	· N	=0.	N	Sinc	0 h	C 94	toh	را ہے	۸)=	2 ((0)	, € ⊔\=	.I.	HJ.	~~	ıı u	1 1	ש' "	17	' (9	117								
f(g <u>Surj</u>	DC+	y ivo	: W	911 N'C	04	hrel	γ\ (γ)	304	ا ا ت د ا	CITUI	44 A	₩±	N)	0.0	i h	v 7	ofi.	1111 1111	N	6 0	110	Ηλ	- 1										
inje	cti cti	14C	it.	tiu	H):	fr	all	n	1+c	OU NLI	=0	ᆈ	^ ,	y - /	, U	y U	C1	пП	U 1	- 0	, су	11)	٨										
g • x	<u>- ^</u>	<u>۷ (۲.</u>	=5/	Y= ^	101	W -	5 0	-101	ر 10 10	J''	. (Λ- L	1 =	0-1	o'-	ع ما		, C	00	h.c	11 -	200	= 0	h = '	الم	4 - /	u ر	77					
4-7	·- y	→ X	-/	Λ-U	13	→	7 9	9	ر کا	40	(n (1)	()-[ı =/	9	y -	ηſ	Ur S	on	15	ne	П -	- /y	- 9	77-	y'	1 - (J ^{TT}						
00100	ماصد	 1.	.:-	L	0.5 1		1-		0		1			1				L	1 4		(G)				0.0	. \	0:-	~ ·			<u>a</u> .	V	
Remo	Irk	· 11	115	DIJ	cct	10ľ	n	us	un	ex	rra	pr	ope	:rt	y.	vot 	e 1	rna	Τ (ກປັ ້) ()	H (La(gra	1191	ز ک م	un	u r	nere	ر (ייייי פו	X.	
Lookir	19	<u>at</u>	nol	ν 1	ne	m	ap	IS	ue)	ine	Δ,	Ag	eG	ar	nd	Að	HE	い/ /.	١,	<u> </u>	t (g	H)=	†(8.0	3 Н)	Sli	nce	3 b	• (9	• %) = (<u> </u>	8.9)) • % .
since	the	20	ije(HC	n I	S (On	npc	ITIŁ	ole	WI.	th	TME	2 0	ICT	on	় এ	/ H	un	(ט)	ar	ષ્ટ -	me	SQ	me	as	; (:	1- S	EtS	•			
																																_	
													_																				
														-	_																		

Example: Tetrahedron (4 equilateral triangles) Let T (the Tetrahedral Group) be the group of rotational symmetries of the tetrahedron 1.e. T = Ege SO3(IR): g(T)=T3 where SO3(IR) is the special orthogonal group of 3×3 matrices i.e. ggT=I and det(g)=1 W, i.e. the rotations fixing the origin, o, in IR3 Question: What is T? Let $G = \Pi$, $X = \{vertices\}$. Let v be the top vertex. $Stab_{\Pi}(v) = \{1, \rho, \rho^2, ...\}$ where p is rotation clockwise by 120° so #Stab (v) > 3. Orb_(v)=x => #Orb_(v)=4. Thus by the orbit-stabilizer theorem, #1123.4=12 since we labelled the vertices we have a map φ: π -> Su (the action map) Question: Is the action faithful i.e. is 4 injective? let geT such that govieve regeker(4). Is g=I? Think of the vertices as position vectors instead of points. Let the position vector of vi be wi then q. Vi=Vi => q. Wi=Wi. Any three of these vectors form a basis of R3 1.e. W, W2, W3 form a basis => q= I since if you have a linear map that does nothing to a basis, it must be the identity => TT → Sy, #Sy = 4! = 24, and #T ≥ 12. By Lagrange's Theorem, #T = 12 or 24 Question: Does there exist an element in Sy not in T? Yes (12) € TT (first day). You would have to flip (34) => #TT=12 Since An IS the only index two subgroup Of $S_n \Rightarrow T \cong A_4$ Note: If you can take a group and map it into Sn, you can know a lot about it Example: cube The symmetry group of the cube is denoted of and is called the octanedral group since the octanedron is dual to the cube. The notion of duality comes from the idea that an object comes from three sets 6= of objects: vertices (o dimensional), edges (I dimensional), and faces (2 dimensional) if you switch the roles of the vertices and faces of the cube, you get an octahedron (The dual of a tetrahedron is itself) 0= { 9 € SO3 (IR) : 9 (6) = 63 $stabe(v) = \{1, \rho, \rho^2, ...\}, \rho = rotation by 120^\circ$ Oc vertices: Orbo(ν)= V= {vertices } => #023.8=24 Theres nothing special about vertices. You could also use the faces Ceasier way to see the stabilizer) to get 4.6=24, or edges to get 2.12=24 eight vertices => V: O→ S8 Six faces => F: O -> S6 twelve edges => E: O -> S12 would be easier to study faces since there are less of them but there's an even smaller set to study You could act on the pairs of opposite faces (3 of them) but this would give a map to sa and #0224, #53=6 which wouldn't help much. Instead, consider x= { pairs of opposite vertices}, #x=4 so 4:0→ S4 thus if 4 is injective, then O 2 S4.

```
Then x= {{wi,-wi33}
If a. Ewi-wiz= Ewj,-wi3 Vi=1,2,3,4 +nen is a= I?
consider w, w2, w3. If $ i=1,2,3 s.t. g · wi=wi then w40G q · w2=-w2 so
                  0
By definition deta=1=> wloch g.w.=w., q.w3=-w3
Now look at wi, wz, wy to get detg=1=> g · wy= - wy but looking at wz, wz, wy, detg=-1+1-
50 q · W · = W · ∀ · => q = I => 6 ≥ Sy
class Equations
Let G be a group and X=G, then GCG by q·a=gag-1 (left action)
Definition: A right action of G on X, denoted x \supset G is a function x \times G \longrightarrow x satisfying:
i) x'= x Yxex
(i) (x9)^h = x9^h \forall x \in X, \forall q, h \in C_1
Thus G5G by a9:= g-'ag since (a)9h=(gh)-'a(gh)=h-'g'agh=(g-'ag)h=(a9)h
is note: If you have a group and you see this exponent notation, it means conjugation
Definition: An orbit of the above action is called conjugacy class i.e. the conjugacy class of a
is logagige G3
-> conjugacy class of 1 is 1
→ the conjugacy class of zez(G) is {z}
-> note: the conjugacy class of a contains 1-1 a 1 = {a3
→ can never contain everything (1 is in its own class)
Definition: The stabilizer of the action, staba (a) = {gea: gag=a3={gea: ag=ga3 is the centralizer.
The kernel is fgeg: gag= a taegs= fgeg: ag=ga vaegy=z(g) - the center (notation used previously)
If x=G=Uorbits, note: #orba(g)=1 iff geZ(g)
Theorem (Class Equation): If G is a finite group and g.,.., greG be a set of representatives of the
conjugacy classes that arent in zca), then #G=#Z(G)+ = [G:Ca(gi)]
>note: #Z(G) and [G: CG(Gi)] divide #G
4> Proof: #G= Z#orbits. If #orbg(g)=1 => ge Z(G) so collect the orbits of size one otherwise,
  #0rb(9)= #G #Stab(9i)
                         but Staba(gi)= Ca(gi) and #6 = [GiH] by definition so
  [G: Ca(gi)]= #Orba(gi)
```

September 8,2015
vanala: Summadrias at the ism solo advana
xample symmetries of the icosahedron
et I=icosahedron group=rotational symmetries in IR3 of the icosahedron=rotational symmetries
f the dodecahedron= rotational symmetries of the dodecahedron (since they are dual)
ne dodecahedron consists of 12 faces that are regular 5-gons, 30 edges, and 20 vertices.
cosahedron is 20 equilateral triangles (note: this example is covered in section 6.2 of Artin's
lgebra)
westion: For which n do we have a helpful map $I \rightarrow S_n$?
rick: There are five cubes inscribed inside a dodecahedron and I permutes the cubes
iving a map φ : I→S ₅ .
ouestion: what is #I?
le can use the orbit-stabilizer theorem
ct on the 12 faces: the stabilizer of a face is 5 rotations and the orbit is all 12 faces
> #I=5·12=60.
we show the map is injective the it's as we do this by showing that £13 and I are the only
formal subgroups of I, thus any map from I to another group 15 either injective or the trivial
nap.
→ (Theorem: The class equation of I is 60=1+15+20+12+12)
-> Claim: There are no proper nontrivial subgroups
> proof: A normal subgroup is a union of conjugacy classes and contains {13. Thus if N=I
then #N=1+(sum of numbers from £15,20,12,123) s.t. #N/60. This is impossible unless
#N+1,60 D
nerefore ker(4)=1, I. However, any nontrivial rotation of a face gives a nontrivial permutation
f the cubes ⇒ Ker4≠I. Thus Ker4=1=>I ← \$5 and 4(I) has index 2 ⇒ 4:I ← As
Un Cast VIA unas Usono and un Institutio I organia populari di cultura una
of the fact, and not not not not not the first of the subject of t
In fact, ∀An, n≥5, there are no nontrivial proper normal subgroups
lass equation: You can partition elements by their order. $\forall \sigma \in G$, $\# \sigma = \# \sigma^9 \ \forall g \in G$

Proof of Previous Theorem: Break up I into elements of a given order:	
order 1: {1}	
order 2: Let e be an edge. The stabilizer of an edge consists of the identity	and the element
that rotates around the center of the edge.	
opposite edges have the same stabilizer so we have 30/2=15 elements of order	2.
order 3: let v be a vertex. For each vertex there are two nontrivial elements an	
vertices have the same stabilizer so we get $\frac{20.2}{2} = 20$ elements of order 3	
order 5: let f be a face. we've said the stabilizer has order 5 and opposite fac	es have the same
stabilizer so 12.4/2 = 24 elements	
Question: Are there others?	
No, since 60=1+15+20+24	
Claim: All elements of order 2 are conjugate	
5 proof The edges form an orbit so the stabilizer of any two elements, s	table) and stable)
are conjugate. Since 1 is conjugate to 1 => stable = [1, pe] and stable >= [1,	Only Hoop of is
	pers, men pers
conjugate to per 🗸	
claim: All elements of order 3 are conjugate	
→ proof: Again, stab (v) and stab (v') are conjugate.	
Let $stab(v)=\{1, \rho v, \rho v^{-1}\}$ and $stab(v')=\{1, \rho v', \rho v'^{-1}\}$ where ρv is a clockwise r	otation and so is
$\rho_{v'}$ if \overline{v} is the opposite vertex then $\operatorname{Stab}(\overline{v}) = \operatorname{Stab}(v)$ and $\rho_{\overline{v}} = \rho_{\overline{v'}}$, $\rho_{v} = \rho_{\overline{v'}}$.	Also pu is
conjugate to $p_{\overline{v}}$ by the rotation bringing v to \overline{v}	
Now for any two faces, f and f!, stab(f)=stab(f') but the elements break	up into two
con v acies.	
consider two opposite faces, f and F, then pf = px-1 and pf is conjugate to px	for the same
reason as with vertices. Thus #[pf] ≥ 12 and if pf is conjugate to pf2 (pf ^	Pe2) then
#[pf]=24 but #[pf] 60 so pf > pf 2, thus 24 breaks up into 24 = 12 + 12 12	
#[pf]=24 but #[pf] 60 so pt ~ pt 2, thus 24 breaks up into 24=12+12 12	
#[pf]=24 but #[pf] 60 so pt pp pf2, thus 24 breaks up into 24 = 12 + 12 12 12 Definition: A group G is called simple if G = {1} and its only normal subgro	
Definition: A group G is called simple if G = {1} and i+s only normal subgro	
Definition: A group G is called simple if G= {1} and i+s only normal subgroitself.	
Definition: A group G is called simple if G = {1} and its only normal subgroitself.	oups are £13 and
Definition: A group G is called simple if G = {1} and its only normal subgro itself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, i	oups are £13 and
Definition: A group G is called simple if G = {1} and i+s only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1 Further, i abelian simple group, then G \(\colon	oups are £13 and
Definition: A group G is called simple if G = {1} and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, if abelian simple group, then G \cong Cp 2) I \cong As is the smallest non-abelian simple group	oups are £13 and
Definition: A group G is called simple if G = {1} and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \cong Cp 2) I \cong As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7)	oups are £13 and
Definition: A group G is called simple if G = {1} and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, if abelian simple group, then G \cong Cp 2) I \cong As is the smallest non-abelian simple group	oups are £13 and
Definition: A group G is called simple if $G \neq \{1\}$ and its only normal subgroitself. Examples: 1) If p is prime, G is simple since the only divisors are p and 1. Further, in abelian simple group, then $G \cong G$ p 2) G is the smallest non-abelian simple group 3) The next smallest has order G is G is G is G is G is G and G is G in G is G is G is G in G is G in G	oups are £13 and If G 18 a finite
Definition: A group G is called simple if G = {1} and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\text{Cp} \) 2) I \(\text{As} \) is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for n \(\text{2} \) and n \(\text{4} \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition."	tion series" i.e.
Definition: A group G is called simple if G \divisors and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \cong Cp 2) I \cong As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for n \cong 3 and n \div 4 is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the property of the prope	tion series" i.e.
Definition: A group G is called simple if G \$\div \{ 1\} \] and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \cong Cp 2) I \cong As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (F7) 4) An for n \cong 3 and n \tau 4 is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composity G \(\frac{1}{2}\) a sequence I=No4 N \(\delta\) N \(\delta\) A \(\delta\) \(\delta\) A \(\delta\) = S.t. \(\delta\) \(\delta\) \(\delta\) N \(\delta\) \(\delta\) is simple. This is called series. Further for any other composition series, I=No4 N \(\delta\) A \(\delta\) \(\delta\) \(\delta\) A \(\delta\) \(\delta\) A \(\delta\) \(\delta\) A \(\delta\) A \(\delta\) \(\delta\) A \(\delta\)	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \(\frac{1}{2} \) and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\sigma \)Cp 2) I \(\sigma \) As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for \(n \geq 3 \) and \(n \neq 4 \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the sequence of the seque	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \$\div \{ 1\} \] and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \cong Cp 2) I \cong As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (F7) 4) An for n \cong 3 and n \tau 4 is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composity G \(\frac{1}{2}\) a sequence I=No4 N \(\delta\) N \(\delta\) A \(\delta\) \(\delta\) A \(\delta\) = S.t. \(\delta\) \(\delta\) \(\delta\) N \(\delta\) \(\delta\) is simple. This is called series. Further for any other composition series, I=No4 N \(\delta\) A \(\delta\) \(\delta\) \(\delta\) A \(\delta\) \(\delta\) A \(\delta\) \(\delta\) A \(\delta\) A \(\delta\) \(\delta\) A \(\delta\)	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \(\frac{1}{2} \) and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\sigma \)Cp 2) I \(\sigma \) As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for \(n \geq 3 \) and \(n \neq 4 \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the sequence of the seque	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \(\frac{1}{2} \) and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\sigma \)Cp 2) I \(\sigma \) As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for \(n \geq 3 \) and \(n \neq 4 \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the sequence of the seque	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \(\frac{1}{2} \) and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\sigma \)Cp 2) I \(\sigma \) As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for \(n \geq 3 \) and \(n \neq 4 \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the sequence of the seque	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \(\frac{1}{2} \) and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\sigma \)Cp 2) I \(\sigma \) As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for \(n \geq 3 \) and \(n \neq 4 \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the sequence of the seque	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \(\frac{1}{2} \) and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\sigma \)Cp 2) I \(\sigma \) As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for \(n \geq 3 \) and \(n \neq 4 \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the sequence of the seque	tion series" i.e. a composition l=k and the
Definition: A group G is called simple if G \(\frac{1}{2} \) and its only normal subgroitself. Examples: 1) If p is prime, Cp is simple since the only divisors are p and 1. Further, is abelian simple group, then G \(\sigma \)Cp 2) I \(\sigma \) As is the smallest non-abelian simple group 3) The next smallest has order 162. It is GL3 (IF2) = PSL2 (IF7) 4) An for \(n \geq 3 \) and \(n \neq 4 \) is simple Tordan-Holder Theorem: Every finite group has an "essentially unique composition of the sequence of the seque	tion series" i.e. a composition l=k and the

```
Examples:
 1) 14 < (123) > 4 $3 so the constituents are C3 and C2.
   <(123)) is the only normal subgroup so this is the only composition series
 2) 2/62 has more than one option:
   0 4 (2) 4 C 6= Z/6Z
   0 4 (3) 4 C 6= 7/6/1
 3) 14 As Since As Is simple
 4) 14A54S3.
   In fact, for n≥ 5 we have 14An 4 Sn
 5) 14 < r<sup>2</sup>> 4 < r> 4 Du
   14(s)4(s, r2)4D4
Definition: A group is solvable if its Jordan-Holder constituents are all cyclic
Example: D4,83,C6 are solvable
September 10, 2015
Fixed Points of P Groups
Definition: Let G be a group. If GCX, a fixed point is xe X such that g·x=x yge G. The set of
fixed points is denoted XG.
Definition: Fix a prime p. A finite group G is called a p-group of #G=pr.
Example: G = C_2(p=2), C_2 = \{1, \sigma\}. Let G \subset X, X finite.
Question: what are the possible orbit sizes?
Any orbit is {x, o x} so the orbit is either size 1 or 2.
Either x= o·x => x ∈ x or x ≠ o·x => #Gx=2 so #x = #x (mod 2).
Therefore, if #X is odd there is necessarily a fixed point.
is Fixed points are elements with orbit size 1
Fixed Point Theorem: Let p be prime, G be a p-group, and G C X where X is finite. Then
\# X^G = \# X \pmod{p}
4) Proof: X is a disjoint union of the orbits and #Gx = [G: stab G (x)] #G=pr. Therefore
   #GX= { divisible by P , If x & XG
   so # x = # x 6+ p(...) ← nonsingleton orbits
          union of singleton orbits
Corollary: If G is a p-group and GCX, with X finite and pt #x, then there is always a fixed
point.
```

```
Theorem: If G is a p-group, then Z(G) = { 13
4 Proof: Let X = G\{13 and x 5 G by conjugation.
  1-> This is valid since if G acts on a set you can remove an entire orbit and G will still act
  p/#x=p-1. Thus 3 a fixed point zexo .i.e 3 z = G, z = 1 st. 9 2 = 2 4 a = G => z a = a z
  => ze Z(G) and z = 1 0
Lagrange's Theorem: If H < G, G a group, then # H | # G
Question: Is there a converse? I.e. If dl#G, does 3H & G such that #H=d?
No.
Example: G=Ay, #Ay=12 but $ H \ Ay S.t. #H=6
Cauchy's Theorem: If p is a prime and pl #G, then 3 ge G s.t. #g=p
This is a partial converse to Lagrange
L> Proof: Let Cp € X where X= ε(g1, g2, ..., gp) ∈ Gp: g1g2...gp=13\ ε1,1,...,13 and let Cp= <σ>
   with \sigma \cdot (g_1, ..., g_p) = (g_p, g_1, g_2, ..., g_{p-1}) i.e. a right cyclic shift. To show this is an action
   we need to show apa, az. ap-1=1 as the group may not be abelian.
   Note that g_p g_1 q_2 \cdots g_{p-1} = g_p (g_1 g_2 \cdots g_p) g_p = g_p (1) g_p^{-1} = 1. Thus this is an action.
   Further, #X=#GP-1-1 because we can pick gi,..., gp-1 freely from GP-1 but then gp=(g1,...,gp+1).
   Since p #G, p #X so 3 a fixed point x & x CP. Thus x = (g1, g2, ..., gp) = o.x = (gp, g1, g2, ..., gp-1)
   Therefore x is of the form (g_1,g_1,...,g_n). Also the product is 1 so g_1 \neq 1, g_1 \neq 1 \Rightarrow 2
                                Ptimes
Theorem: Agroup of order p2 is isomorphic to Cp2 or Cp x Cp.
harefore it is necessarily abelian
b Proof: 宏(的) # {13 so # 宏(的) = p or p2.
   If # 2(G)=p2 then G= 2(G) => G is abelian.
   Otherwise Z(G)=G and #G/Z(G)=#G/#Z(G)=PI/P=P=>G/Z(G) is cyclic=> G is abelian.
   # 3ge G st. #g=p2 then G= <g> ≅ Cp2. Otherwise yg ≠ 1, #g=p.
   Let 9, = | and H, = <9,7 = <9,1 > i=1,...,p-1. Let 92 & G\H, , H2 = <92> = <92) j=1,...,p-1 so 9, i = 92
   for 150, 150-1 => HINH2 = 213 so HIH2 = 29, 192 3 = G OEC, 160-1 with
   #H,H2= #H, #H2 = p2
   The function \varphi: G \longrightarrow H_1 \times H_2

g_1^i g_2^j \longmapsto (g_1^i, g_2^j)
                                                  is well-defined and a bijection.
                                   (05 i, i 5 p-1)
   => Ψ is a homomorphism and HixH2 = CpxCp => Cn = CpxCp
Sylow Theorems
Theorem: If p is prime and pilts then THEG st. #H=pi
→ This is a partial converse to Lagrange. Cayley's Theorem is j=1.
Ly Proof: By Induction □
Definition: Let G be finite and p be prime. A p-subgroup of G is H = G s.t. # H=pi for j > 1.
If pril #G (i.e. #G=pm, ptm) then a subgroup of order pr is called a sylow p-subgroup.
The set of Sylow p-subgroups of G is denoted Sylp (G). Further np (G) := # Sylp (G) (sometimes
just denoted no)
```

```
Sylow Theorems: Let #G=prm, p/m
(I) np(G)≥1. In fact vj st. 0≤j≤r, 3H≤G st. #H=p)
  > Proof: To show: If H≤G, #H=pi, i<r then JH', H≤H'≤G with [H':H]=p 1.e. #H'=pi+1
     Let HC G/H by h · aH = hgH. (Note: h · (1H) = 1H)
     #X = [G: H] and i<r => p/[G:H]
     REXH means X=QH S.+ hgH=QH VheH iff hgegh vh iff gingeh vh iff gilgeh gh iff gengch)
     SO XH = NG(H)/H = G/H
     # NG(H)/H = # XH = #X = [G: H] (mod p) => p| [NG(H): H]
     Note: Hang(H) so NG(H)/H is a group with pl#NG(H)/H so by cauchy's Theorem 3 H'& NG(H)/H
     S.t. #H'=p. Let H' be the inverse image of H' in NG(H) then [H': H]=p and H' & G. Induction 1
(II) All sylow p-subgroups are conjugate. In fact APE Sylp (G) and AQ & G S.t. # Q=p3 ] 3 de G S.t.
   Q ≤ q Pq-1
  4 Proof: Let P. Q & Sylp (G), P = Q and let Q @ G/p by q • (AP) = (QA)P. pt # G/p so 3 qe G s.t.
     and P=aP vaea => ageaP vaea => aeaPa-1 vale a => aeaPa-1 and since conjugation is a
     bijection so #Q|#gPg-1=> Q=qPg-1 \(\overline{Q}\)
(本) np=1 (modp). In fact, np=[G:NG(P)] for any PESylp(G) and npl m.
September 16,2015
Proof of Sylow Theorem (III): Let PESYIP(G) and Sylp(G) 5 P by conjugation. By the fixed point
theorem, n_0 = \# Syl_p(G) = \# Syl_p(G)^p \pmod{p}
claim: Sylp (G)P= {P3
L> Proof: QE Sylp (G)P Iff g'Qg=Q YgEP Iff P=NG(Q) Iff P IS a Sylow P-subgroup of NG(Q)
  Since #NG(Q)/pm, #Q=pr and NG(Q) = Q but Q is also a Sylbu p-subgroup of NG(Q) so
  3 90 € NG(Q) St. 90 Q Q = P => Q=P V
=> np=1(modp)
Now consider sylp(G) 5 G by conjugation with one orbit. Stab G($) = NG(S) 45 = G so by the
Orbit-Stabilizer Theorem np= #Sylp(G) = #OrbG(P)=[G: StabG(P)]=[G:NG(P)]
=> np m since #G=prm and since PSNG(P), #NG(P)=prm so
n_{p} = \frac{\# c_{1}}{\# N_{b}(p)} = \frac{m}{m!} so m'n_{p} = m
Theorem: If p,q are primes, p<q, q = 1 (mod p) then every group of size p2q is abelian
(so if #G=p2q then G≅ Cp2xCq ≥ Cp2q or G≥ CpxCpxCq ≥ Cpx Cpq)
L> Proof: np=1 (mod p) and np1 q => np=1 since q is prime and q ≠1 (mod p)
  Claim: ng=1
  L> Proof: ng =1 (mod q) and ng/p² so ng =1,p,p². ng ≠p since p<q so p ≠1 (mod q). If ng=p²
     then p2=1 (mod q) => q1p2-1=(p-1)(p+1) => q1p-1 or q1p+1. q1p-1 since q>p and p-1<p
     so q | p+1 but q>p => q = p+1 => q = 1 (mod p) which is a contradiction /
  By Assignment 3, if no=1 and no=1, PE Sylp (ch), QESylo (G) then YgEP, heQ, gh=hg
  #P=P2 => P= Cp2 or Cp xCp and #Q=p so Q ≥ Cp and PQ=G since #P#Q=# G and PDG=1 \( \overline{D} \)
```

```
Semidirect Products
Motivating Example: Let R be a field (or a commutative ring with 1) and let v be an n-dimensional
R-vector so V= R", then GL(V) = GLn(R) where GL(V) = £T: V → V: Tis linear and invertible $
(so nxn invertible matrices).
An affine linear transformation of V is f: V - V s.t. f(v) = Av+b where A = Mn,n (R) b = V.
If f(v)=Av+b, q(v)=A'v+b', (fog)(v)=A(A'v+b')+b=(AA')v+(b+Ab') so f is invertible iff A
Affice = the group of invertible affine linear transformations = &f: V -> V : AE GLICE)}
where the operation is function composition and f(v) = v is the identity.
As a set, Affn(R)=GLn(R) × V= {(A,b) | A & GLn(R), b & V 3 but the group Gln(R) × V nas
operation (A,b) · (A',b') = (AA',b+b') = (AA',b+Ab') so the group is not the direct product of
the groups. Also V= { I } × V = Affn(R), V = Affn(R) so (A, b') (I, b') (A, b) = (A'A, ...) = (I, ...) & V
but Gin(R)=Gin(R) × 803 € Affn(R) ≠ Affn(R) since (A,b) (A',O) (A,b)=(A,b) (A'A, A'b)=(A'A'A,...)
but in H, xH2 both H, H2 = H, x H2
we use what is called a semi-direct product to generalize the direct product to get
   Affn(R)= VX GLn(R)
Theorem: Let Nand K be two groups and KCN (i.e. we have a homomorphism 4: K -> Aut(N))
Let G=N x k as a set and define (n, k,)·(n2,k2)=(n,(k,1n2), k,k2). This defines a group
structure on G=N*K denoted NAK (or NAKK) called the semidirect product of N and K
with respect to 9.
Furthermore #G=#k·#N. Identifying Kand KxISG, and N and IXNSG we have that K,NSG,
N=G, and Nnk=1. Lastly kon = knk1, nen
15 If the action is the trivial action, then this is just the cross product
Example: Let N be abelian and k=C2=(0). Define 4:K->Au+(N)
                                                                (if a group is abelian then
                                                  σ+→(n+→n')
inversion is an automorphism)
If N=Cm=<r> then Cm × C2 has size 2m, an element (5,1) s.t. (5,1)2=1, an element (1,1) s.t.
(1,r) = 1, and or o = o r = r - 1 so Cm x C2 2 Dm
Definition: Let N, K & G. C 1s the internal direct product of N and K If
  i) G=KN (KNN=1)
  ii) The map KN-KXN IS an Isomorphism
Definition: Let N, K & G. G is an internal semidirect product if
   i) G=KN (KNN=1)
  ii) The map kn -> Nx & k is an isomorphism where 4(k) (n) = knk-1
Theorem: If G is a group and N, K & G, then KN & K × N iff
   i) K,N4G
  ii) KNN=1
G is the internal direct product iff we also have
  iii) # K # N = # G
Example: Let n=2m, m odd (i.e. n=2 (mod 4)) and consider Dn. #Dn=2n=4m. Let N=<s, r2>
(s reflection, r rotation) and K= <rm> = {1, rm3. N \( \Darrow\) Dn since [Dn: N] = 2 and K \( \Darrow\) Dn since
K=2(Dn). N∩K=1 Since m 15 odd. N≥ Dn/2 SO #N#K=n·2=2n=#Dn SO Dn=N×K=Dn/2×C2
```

	NK it			0 Y	na v	e																										_
Ü	i)#K	# 1 = #	Ch																													
																																_
xarr	nple: A	ffn LR') = [2 ⁿ X	ઉ	.n (R)																									
																																_
	iition:																													_		_
	Co is			ia	S I	em	i-d	ire	2C+	P	od	υc	.† j.	የ ፣	3 a	pr	ope	er	no	ntı	rivi	al	υ	bg	rol	qc	tho))	nas	a		_
CO	mpler	nen+																														
- 20	- 01	C - C -	. ,		T1		,	Cı	ماد				0			c	. 2	/ ~ ?		,	/-	r2\	10.0					1-				_
	nple:														are	· i	15,	< 0.	٠), (. ب ک		0~7	nc	25	no	CC	m	pie	me	2n 1	- 5	0
-4 15	not a	i Choi	1tr	1010	(וג	26	mı	JIN	ec+	F	oroc	טנ	14.																			_
Sen!	-ows b	ar I	2 (3 0	16																											
SE P	temb			A U	13																											_
Theo	rem: ⁻	There	040		0	~	<u> </u>	~	~	de	_ 1	2		٠.	ie	010	201	-06	iei	00.												_
• (Cux C3	≥ C	ui c	, J	3	i UU	۲۵	U	u	ساح			cuf	10	, 13	.U11	וטו	۲	110	71.												
	$C_2 \times C_2$			хſ	6																											_
• /					• •																											
• 1																																_
	3 X C L	(if o	e C	4. ì	se (Ca.	σ	ሪ =	γ2)																						_
	1:700										מט	a	nd	N	be	a	Sv	lou	υ	3-s	suk	gr	טט	P.								
n ₂	=1 (m	od 2)	ar	nd	ทู่	3=	=> r	2=	10	r 3	; Y	13	= 10	mo	d3) 0	nd	ทร	4	=>	ทร	=1	or	4								
	<=4 <i>=</i> >																		•													
Cla	im I	One	of	N	or	K	18	no	rm	ıal																						
Ly	14 N \$	(G th	en	ทร	=4	, N	,= 1	۸٬۷	12,1	V3,	Nч	Si	nce	+ +	hev	y a	re	Or	de	r	3 .	the	re	a	re	no	n	on.	triv	vi a	1	
		er su																														
		orde																														
ca	se I:	N,K≙	د م =	=> C	า เร	a	bel	iaı	n =) (հ≃	K,	(N	Sir	nce	K	٥N	=1,	#1	<#I	V =	# C-	, !	N .k	Δ	G						
Ca	se 2:	K4G,	N 4	G	SO	n	3‡	1 -	Hhu	s 1	N3=	4.	Le	+ 5	Syl	3((ກ) 5) (ე	by	, c	oη	jυį	at	ioi	า.	we	90	2+	φ:	<u>ს</u> _	→ Se	4.
14	we s	how	the	a +	φ	is	in	jec	tiv	e	we	9	e+	G	,≃ <i>,</i>	44	Sir	nce	#	G:	-12	a	nd	G	m	ps	is	or	nor	ph	ical	11
_	to S4	7.1																								-						
	er 4=	1																										ab	G (Ni)	=3	3
	nce u																						-3:	=#	Ngl	Ni)					
	Stab					er	φ=	: (<u>-</u>], N	i=	113	=>	φ	IS i	nj	ect	ive) =	· C-	<u>~</u>	Αч							_				_
	se 3:																		_1													
	101	I	,																								טוט	n	neo	n		
Kr	n=n1					7	wh	icr	18	a	CO	ntr	ad	ict	ion	. S	b †	he	ac	tic	n	18 1	nor)tri	vic	11.						
		a: K										,				_		e 2														_
	1 1	(C3)=																				_					CA /					
	1 1	the									1																					_
		K="=n										1																=> '	K1=	KK	ر ه.	
	1 1	e: we								1																		_				_
	1 1	=1.n																							Kı	LS	ınc	<u>e_</u>				_
	Ψ(K1)=1=7	rin	\mathcal{K}_{1}^{-1}	=n	=>	KIY	1 = r	ነኚ	VI	ne!	N)	<u>= n</u>	11/	, ' (sin	ce	K ,=	'K,	,)	F (Kir)) [_

```
Case b: K \ C4
      Let K=(x), N=(y). We know xy + yx since G is not abelian
      => xyx-=y-=> C=NxyN, where \varphi: x^i \mapsto \psi^i \Rightarrow G \cong C_3 \times C_4, called the dicyclic group of
     of order 12.
G-Sets
Definition: Let X be a (left) G-set. A subset Y = X is called G-stable (or G-invariant) if G-Y = Y (i.e.
vgeG, vyeY, goveY). A G-subset of X is YEX that is a G-set under the same action
Theorem: A subset Y & X is a G-subset if and only if Y is G-stable. ("closure under action")
Definition: Let X,Y be two G-sets. A function f: X -> Y is called a morphism of G-sets (or a
G-map or a G-equivariant map) if ygeG Yxex, f(g·x)=g·f(x)
Definition: The set of G-maps X \rightarrow Y is denoted Maps(X,Y). f \in Maps(X,Y) is called an isomorphism
of G-sets if 3 femaps (X,Y) such that fof = idx and fof = idx
Theorem: feMap G(X,Y) is an isomorphism if and only if f is a bijection.
Construction: If I is a set and Xi is a G-set Vie I, then X= L Xi is a G-set
4 Note: If fi: Xi→Xi' is an isomorphism viel then f: X→X'= L Xi' is an isomorphism where
   f(x) = fi(xi) if x = xi \in Xi
Proposition: Let X be a G-set
   i) Y = x is a G-subset if and only if Y is a union of orbits
   ii) VXEX, Orba(x) = 5/staba(x) as G-sets
   \rightarrow Proof of (ii): Let H=Stab G(x) and define f: \frac{G}{H} \rightarrow Orb G(x). We showed (on 9/03)
                                                         9H \longrightarrow 9.x
      that f is a well-defined bijection.
      Let g, v & G. f(v (gH)) = f(vgH) = (vg) · x = 8 · (g · x) = 8 · (gH)
      => f is G-equivariant.
Definition: A G-set, X, is called transitive if there is only one orbit
→ If X is transitive then it is 6/H for some H
Structure Theorem for G-sets: If X is a G-set then \exists a set I and \exists i \exists G vieI such that X \cong \Box G/Hi
   > Proof: Let I= { Orba(x): x ∈ x } and let xie i (i= Orba(xi)) vieI, then X= U Orba(xi).
      Let Hi= Staba(xi) then fi: 6/Hi ~ Orba(xi) which gives f: Let G/Hi ~ Let Orba(xi)=X \(\overline{\text{Z}}\)
construction: Let x, y be G-sets and Map(x, y)=\{f: x \rightarrow y: f \text{ is a function}\}. Define GC Map(x, y)
by (a.f)(x)=g.(f(g.,x)) ("g.f=gfq"). This makes Map(x,Y) a G-set!
\rightarrow Proof: 1. f=f, (q\cdot(h\cdot f))(x)=q\cdot(h\cdot f)(q^{-1}\cdot x)=g\cdot(h\cdot f(h^{-1}\cdot (q^{-1}\cdot x))+gh\cdot f((qh)^{-1}\cdot x)=((qh)\cdot f)(x)
Proposition: Map (X,Y) = Map (X,Y) = fixed points
```

Sep)†(em	be	r:	22,	20)15																										
Rin	a	The	ory	,																													
	3	,,,,																															
Defi	ni:	tion	: A	rin	gi	s a	se	+ 6	2 u	itt) †(ωo	bii	nai	ry	op	ero	ı+ic	ons	+	ano	d •	, aı	nd	ele	me	nts	5 (1,1	E R	.(n	nay	be
		satis																															
Ü		R,+,(
		a) +							(b	+ C) = ((a+	p).	+ C																			
		o) 0																															
		EC																															
		+ (t																															
Ĺ		f 1-													a	gro	oup	th	at	m	ay '	not	- h	ave	ir	ver	se.	S:					
) • i) · C																				
		0) 1																															
Ü	ii)) Dis	trik	oti	vit.																												
						_	(at						_																				
- 18	cc	allec	CC	mr	MU.	rat	IVE) I 1	•	IS ('On	nM	uti	ati'	ve	ı.e	. a	•6	- b	•a	AO	b								_			
•			77 /			_		~	c.7					~ \												_ \				<u> </u>			
:XQY	ηp	le: Z	, <u>"</u> /I	↑ Z	, Q	, IR	, Œ	,IK	ſX]	, Cl	X,Y	1,1	Inl	(K)	, IH	CH	ne c	jua-	eri	٥١٥	n i	ring) / (uge	br	a)	are	a	ıl r	ing	S		
\ - C:		1					1	: -0		٠.		٠ اد																		-	-		
vet 1	nı	tion	: An	alc	jebi	ra	sat	IST	ies	CL) Qr	10 (.ll)			امما		II (,				b		ا نوا		.!1	۱	1	. ام :		: 1 .		
7 U	UYY	nmit	un	u t	-00	tes	5 [1	ng	18 (UUr	u:	880	Cla	TIVE	ટ વ	igei	bru	((or (J 1	rig	. 1.6	2. U	riy	ig '	W IT	rno	0+	Ide	311 7	ту)	
en	nai	rk: (Som	es	peo	ple	re	qυ	ire	1=	ŧ٥.	Αľ	lou	vin	q 1	L= () ir	npl	ies	+r	ie (exis	ter	nce	Of	or	ıly	on	e e	+x£	ra	rir	q:
		ero 1																•															
xa	mŗ	oles:	Th	e f	ollo	ωi	ınq	aı	re	ale	eb	ra	S :																				
		onio																															
L	ie	alg	ebr	as	e.g	j . N	1n (IR)) w	i+h	US	va	I a	ddi	tic	n	but	·th	e	pro	dυ	c+	is	de	not	-ed	[,	A, B]=	AB	-B	Α.	
N	lot	ass	ocic	Hiv	e a	nd	no	id	en¹	tity	1																						
• 1	or	dan	alo	eb	ra s																												
C	on	npos	itio	n (alge	bro	38																										
		tion																							İS	CO	llle	d () (d	livi	sio	n	
inc		or o	sk	ew	fic	ed)). <i>F</i>	\ c(m	mu	ta-	tive	ટ	ivi	sio	n r	ing	j is	CO	llle	d (a Fi	elc							_			
			+-													_													_	_	_		
		tion																	ne	Ca	nce	ella	tic	n	pro	pe	rty	, 1.	e. '	٧a	,b,C	ter	2,
) † (D :	a·b	= a	C =	?b	= C	, 18	CC	ille	d C	ın (int	egr	al	do	m	ain													_			
		, , ,	1 1.								.1		_			_																	
xar	np	le: Z	167	18	sn	0+ (an	ınt	reg	rai	do	m	ain	Si	nce	2	•3=	2.0) bl) 大) ‡ (5								_			
																														_	_		
	_																													_	_		
																														_			
																														_	_	_	
																														_			
-	_																												_	_	_	_	
																														_			
	_																												_			_	

Examples:
1) Z is an integral domain but not a field (2azz or 2a \le -2 or 2a =0, no inverses)
2) Q, R, and C are fields
3) Z/nz is a commutative ring. If n is composite, Z/nz is not an integral domain
4) 2/pz is a field for p, prime
5) Hamilton's Quaternions, H is not commutative.
H={a+bi+cj+dk:a,b,c,deR3
$i^2 = j^2 = 1k^2 = -1$, $ij = 1k$, $jk = i$, $1k = i$, $1k = i$, $1k = -i$, $ik = -j$
The norm is $N(q) = a^2 + b^2 + c^2 + d^2$, $\bar{q} = a - bi - cj - dk = N(q) = q\bar{q} = \bar{q}q$
\rightarrow Note: $N(q)=0$ if and only if $q=0$ so if $q\neq 0$, $q^{-1}=\frac{q}{N(q)} \Rightarrow H$ is a division ring
6) If de Z and d is not a square, then Q(10) is a field, it is called the quadratic field.
Q(10)= (a+b10: a,beQ3. If x=a+b10, x=a-b10, N(x)=xx=a=bd.
→ Note: N(a)=0 if and only if a=0 so for a ±0, a== a/N(a)
7) Let A be a ring. R=Mn(A) is a ring where if M ER, (a. a. a. a. a. a. a.
M= (: :), qij e A
$a_{n_1} \cdots a_{n_n}$
If M,M'ER, M+M'=(Qij+Q'ij)
/00\ /100\
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
M. M'=(Cij) where Cij = n aik a'kj
1111 Cacy Whate Cay 2: Air ari
- This is not necessarily commutative or a division ring
8) Let A be a commutative ring. Then A[x], i.e. the polynomials over A, form a ring
A[x]= { P(x)=0-+0 x+ +0xn: 0:6 A n 6 7 - 3 = } P(x)= 5: 0:xi: 0:6 A 0:±0 for all bit finitely many it
$A[x] = \{P(x) = a_0 + a_1x + + a_nx^n : a_i \in A, n \in \mathbb{Z}_{\geq 0}\} = \{P(x) = \sum_{i \geq 0} a_ix^i : a_i \in A, a_i \neq 0 \text{ for all but finitely many } i\}$
12 0(m) D (m) E N[m] D(m) + D (m) - \$ (n; +b;) x i
If $P(x)$, $Q(x) \in A[x]$, $P(x) + Q(x) = \sum_{i \geq 0} (a_i + b_i) x^i$ If $P(x)Q(x) = \sum_{i \geq 0} C_i x^i$ where $C_i = \sum_{k=0}^{\infty} a_k b_{i-k}$
03 0 4 1 2 2 3 4 4 5 5 5 5 6 6 7 4 7 5 5 6 7 5 6
4
9) If X is any set and A is any ring, Map (X, A) is a ring with (f+9)(x)=f(x)+g(x) and (f-9)(x)=f(x)g(x),
O(x)=0, 1(x)=1
$O(x)=0$, $I(x)=1$ Ly e.g. If $x=IR$ (or any topological space) $R=C(x,IR)=\{f: x\rightarrow IR: f \text{ is continuous}\}\$ is a ring. It is
O(x)=0, 1(x)=1
$0(x)=0$, $1(x)=1$ Ly e.g. if $x=IR$ (or any topological space) $R=C(x,IR)=\{f: x \rightarrow IR: f \text{ is continuous}\}\$ is a ring. It is Commutative but not an integral domain since for example
$O(x)=0$, $I(x)=1$ Ly e.g. If $x=IR$ (or any topological space) $R=C(x,IR)=\{f: x\rightarrow IR: f \text{ is continuous}\}\$ is a ring. It is
$0(x)=0$, $1(x)=1$ 1-> e.g. if $x=1R$ (or any topological space) $R=C(x,R)=\{f: x\rightarrow R: f \text{ is continuous}\}$ is a ring. It is Commutative but not an integral domain since for example $$
$0(x)=0$, $1(x)=1$ Ly e.g. if $x=IR$ (or any topological space) $R=C(x,IR)=\{f: x \rightarrow IR: f \text{ is continuous}\}\$ is a ring. It is Commutative but not an integral domain since for example
O(x)=0, $1(x)=1$ Ly e.g. If $x=1R$ (or any topological space) $R=C(x,R)=\{f: x\rightarrow R: f \text{ is continuous}\}$ is a ring. It is commutative but not an integral domain since for example The image is a ring of the image in the image in the image is a ring. It is a ring of the image is a ring of the image is a ring. 10. Let I be an indexing set and Ri be rings VieI. Then $\prod_{i \in I} R_i$ is a ring.
O(x)=0, $1(x)=1$ Ly e.g. If $x=1R$ (or any topological space) $R=C(x,R)=\{f:x\rightarrow R:f:s \text{ continuous}\}$ is a ring. It is commutative but not an integral domain since for example $= -FO \text{but neither is 0.}$ 10. Let I be an indexing set and Ri be rings VieI. Then $\prod_{i \in I} R_i$ is a ring. (ai)ieI + (bi)ieI = (ai+bi)ieI (ai)(bi)=(aibi), $O=(0,,O)$, $1=(1,,1)$
O(x)=0, $1(x)=1$ Ly e.g. If $x=1R$ (or any topological space) $R=C(x,R)=\{f: x\rightarrow R: f \text{ is continuous}\}$ is a ring. It is commutative but not an integral domain since for example The image is a ring of the image in the image in the image is a ring. It is a ring of the image is a ring of the image is a ring. 10. Let I be an indexing set and Ri be rings VieI. Then $\prod_{i \in I} R_i$ is a ring.
0(x)=0, 1(x)=1 Loginf x=1R (or any topological space) R=C(x,R)={f: x→R: f is continuous} is a ring. H is Commutative but not an integral domain since for example 10. Let I be an indexing set and Ri be rings VieI. Then TRi is a ring. (ai)ieI+(bi)ieI=(ai+bi)ieI (ai)(bi)=(aibi), 0=(0,,0), 1=(1,,1) If #I=2, this is not an integral domain
O(x)=0, $1(x)=1$ Ly e.g. If $x=1R$ (or any topological space) $R=C(x,R)=\{f:x\rightarrow R:f:s \text{ continuous}\}$ is a ring. It is commutative but not an integral domain since for example $= -FO \text{but neither is 0.}$ 10. Let I be an indexing set and Ri be rings VieI. Then $\prod_{i \in I} R_i$ is a ring. (ai)ieI + (bi)ieI = (ai+bi)ieI (ai)(bi)=(aibi), $O=(0,,O)$, $1=(1,,1)$
O(x)=0, $1(x)=1$ Ly e.g. If $x=1R$ (or any topological space) $R=C(x,R)=\{f:x\rightarrow R:f \text{ is continuous}\}$ is a ring. It is commutative but not an integral domain since for example 10. Let I be an indexing set and Ri be rings $VieI$. Then $\prod_{i \in I} Ri$ is a ring. (ai)ieI+(bi)ieI=(ai+bi)ieI (ai)(bi)=(aibi), $O=(0,,O)$, $1=(1,,1)$ If $\#I=2$, this is not an integral domain Definition: $a \neq 0$ is a zero divisor if $\exists b \neq 0$ such that $a \cdot b = 0$ or $b \cdot a = 0$
0(x)=0, 1(x)=1 Loginf x=1R (or any topological space) R=C(x,R)={f: x→R: f is continuous} is a ring. H is Commutative but not an integral domain since for example 10. Let I be an indexing set and Ri be rings VieI. Then TRi is a ring. (ai)ieI+(bi)ieI=(ai+bi)ieI (ai)(bi)=(aibi), 0=(0,,0), 1=(1,,1) If #I=2, this is not an integral domain
O(x)=0, 1(x)=1 b e.g. if x=1R(or any topological space) R=C(x,iR)=\{if: x\rightarrow R: f is continuous\} is a ring. It is Commutative but not an integral domain since for example - = O but neither is O. 10. Let I be an indexing set and Ri be rings VieI. Then \(\pi \) is a ring. (ai)(ieI+(bi) ieI=(ai+bi)ieI (ai)(bi)=(aibi), O=(0,,O), 1=(1,,1) If \(\pi \) I=2, this is not an integral domain Definition: \(a \neq 0 \) is a \(\frac{2}{2} \) ero divisor if \(\pi \) b\(\neq 0 \) such that \(a \neq b = 0 \) or \(b \neq a = 0 \) Example: 2 in \(\frac{Z}{6} \) is a \(\frac{2}{2} \) ero divisor since 2.3=0
O(x)=0, $1(x)=1$ Ly e.g. If $x=1R$ (or any topological space) $R=C(x,R)=\{f:x\rightarrow R:f \text{ is continuous}\}$ is a ring. It is commutative but not an integral domain since for example 10. Let I be an indexing set and Ri be rings $VieI$. Then $\prod_{i \in I} Ri$ is a ring. (ai)ieI+(bi)ieI=(ai+bi)ieI (ai)(bi)=(aibi), $O=(0,,O)$, $1=(1,,1)$ If $\#I=2$, this is not an integral domain Definition: $a \neq 0$ is a zero divisor if $\exists b \neq 0$ such that $a \cdot b = 0$ or $b \cdot a = 0$
O(x)=0, 1(x)=1 b. e.g. if x=1R (or any topological space) R=C(x,R)={f:x}R:f is continuous} is a ring. It is Commutative but not an integral domain since for example
O(x)=0, 1(x)=1 b e.g. if x=1R(or any topological space) R=C(x,iR)=\{if: x\rightarrow R: f is continuous\} is a ring. It is Commutative but not an integral domain since for example - = O but neither is O. 10. Let I be an indexing set and Ri be rings VieI. Then \(\pi \) is a ring. (ai)(ieI+(bi) ieI=(ai+bi)ieI (ai)(bi)=(aibi), O=(0,,O), 1=(1,,1) If \(\pi \) I=2, this is not an integral domain Definition: \(a \neq 0 \) is a \(\frac{2}{2} \) ero divisor if \(\pi \) b\(\neq 0 \) such that \(a \neq b = 0 \) or \(b \neq a = 0 \) Example: 2 in \(\frac{Z}{6} \) is a \(\frac{2}{2} \) ero divisor since 2.3=0
O(x)=0, 1(x)=1 b e.g. if x=IR(or any topological space) R=C(X,IR)={f:x→IR:f is continuous} is a ring. It is Commutative but not an integral domain since for example
O(x)=0, 1(x)=1 b. e.g. if x=1R (or any topological space) R=C(x,R)={f:x}R:f is continuous} is a ring. It is Commutative but not an integral domain since for example

```
Examples:
1) Zx = {±13
2) Fx F \ Eo3 if F is a field
3) For n \ge 2, (\frac{7}{n}z)^x = \{a \in \frac{7}{n}z : qcd(a,n) = 13. The zero divisors are the nonzero, non-units i.e. a
   such that gcd (a,n) > 1
4) For C(R,R), f(x)=x is not a unit but also not a zero-divisor. It is not a unit since f(o)=0.
   It is not a zero-divisor since f(x)q(x)=0 \Rightarrow q(x)=0 for x\neq 0 but q is continuous so
   \lim_{x \to a} q(x) = q(0) = 0 \Rightarrow q(x) = 0
Proposition: If R is a commutative ring, then R is an integral domain if and only if R
has no zero-divisors.
Proposition: A finite integral domain is a field
L> Proof: Let a €R, a # 0 and la: R→R since R is an integral domain, la is injective and since
   R is finite, la is surjective
   \Rightarrow \exists x \in \mathbb{R} such that la(x) = ax = 1 \square
Remark (Wedderburn): A finite division ring is a field.
Definition: Let R,R' be two rings. A function 4: R - R' is a ring homomorphism if:
   i) \varphi is a group homomorphism for (R,+,0) \rightarrow (R',+,0) i.e. \varphi(a+b)=\varphi(a)+\varphi(b)
   (i) \varphi(a \cdot b) = \varphi(a) \varphi(b)
   iii) 9(1)=1
   has the book doesn't require (iii)
Ψ is an isomorphism if ∃7: R! → R nomomorphism such that Ψ·7= ide and 7·9= ide
September 24,2015
Examples:
1) \mathbb{Z} \rightarrow \mathbb{Q}, \mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z} are homomorphisms
2) Let I be a set and Ri be rings VieI. Let R = \pi Ri. If jeI then \pi_j : R \longrightarrow Rj is a homomorphism
3) \varphi: H \hookrightarrow M_2(c) with \varphi(a+bi+cj+dk) = a(10)+b(i0)+c(0-i)+d(0i)
   is an injective homomorphism.
Definition: A subset SER is a subring, denoted SER, if (s,+, ,0,1) is a ring.
The identity of S needs to be the identity of R
Proposition: SSR is a subring if and only if Va, bes:
i) a+b € S
ii) -aes
iii) abes
iv) 1e S
```

```
Examples:
1) Z = Q = R = C = H
a) If de Z is squarefree then Z[1d]={a+b\d:a,beZ3\eq(1d)
   e.g. Z[i] = Q(i) (d=-1). Z[i] is called the Gaussian integers. If d=-3 then Z[1-3] = Q(1-3) but
   in fact \omega = \frac{-1 \pm \sqrt{-3}}{2} \notin \mathbb{Z}[\sqrt{-3}] but \mathbb{Z}[\omega] = \{a + b\omega : a, b \in \mathbb{Z}\} \leq \mathbb{Q}(\sqrt{-3}) (note: \omega^3 = 1, \omega = e^{a\pi i/3})
   I will is called the Eisenstein integers.
    \mathbb{Z}\left[\frac{-1+i}{2}\right] = \{a+b(\frac{+1+i}{2}) \mid a,b \in \mathbb{Z}\} is not a subring of \mathbb{Q}(i).
                          0 = \begin{cases} 1 & \text{if } D = 2,3 \pmod{4} & \text{then } \mathbb{Z}[0] = \{a+b,0:a,b\in\mathbb{Z}\} \leq \mathbb{Q}(\sqrt{d}) \\ 1 & \text{if } D = 1 \pmod{4} \end{cases}
   In general, let
    → Z[O] is the maximal ring of this form
3) Let p be prime and \mathbb{Z}_{(p)} := \begin{cases} \frac{a}{b} \in \mathbb{Q} : \gcd(a,b) = 1, p \nmid b \end{cases} then \mathbb{Z}_{(p)} \leq \mathbb{Q} called the localization of
   Z at p
4) Let R=C(IR,R). Fix N>0 and let Sn= {fec(IR,IR): f(x)=0 for 1x1> N3. It can be shown that If
   f,ge Sn then f+ge Sn, fge Sn, Oe Sn and if 1_N(x) = \begin{cases} 1 & |x| \le N \text{ then } 1_N \cdot f = f = f \cdot 1_N \text{ V} \neq S_N \end{cases}
   thus Sn is a ring with identity 1n but 1n ≠ 1∈R (1 €Sn) so Sn is not a subring of R
Definition: The image of a homomorphism \varphi: \mathbb{R} \to \mathbb{R}' is im(\psi) = \{ \varphi(r) : r \in \mathbb{R} \}
Proposition: im (4) = R'
Definition: The Kernel of a homomorphism 9: R > R' is Ker 9= {re R: φ(r)=0}= 9-1(0)
→ Ker(4) ≥ (R,+, o) (as a subgroup)
Question: Is Ker(4)≤R?
Answer: No unless R'=0 since \varphi(1)=1+0 if R'+0 so 1 \notin Ker(\varphi)
Let P/ker q = left cosets of Ker q = {a+I: a e R} where I = ker q. This is an abelian group with
(a+I)+(b+I)=(a+b)+I
Question: is P/I a ring with (a+I)·(b+I)=(a·b)+I?
Answer: yes since \overline{\varphi}: \stackrel{p}{\swarrow}_{1} \longrightarrow im\varphi is a bijection so the structure on the left is the
corresponding ring structure on the right. Conversely, when is an additive subgroup ISR such
that P/I is a ring with (a+I)\cdot(b+I)=ab+I and 1=1+I?
Abstract Characterization: If and only if I=Ker \varphi for some ring homomorphism \varphi: R \longrightarrow R'
\hookrightarrow \varphi: R \longrightarrow P/I, Ker \varphi = I
Concrete Characteristic: If and only if YreR, YaeI, ra and areI i.e. "I absorbs products"
Definition: Such an IER as above is called a (two-sided) ideal of R, denoted IAR.
Proposition: Isk is an ideal if and only if
i) [ # Ø |
ii) Ya, be I, a-be I
iii) Ya E I , YrER, ar , ra E I
```

```
Definition: If I = R, then P/I is called the quotient ring of R by I
Example: For all rings R, I={034R and R4R. {03 is called the trivial idea) and I=R is called the
unit ideal since if I=R then I=R if and only if JueR* with ueI. P{03=R and P/R=0.
Definition: An ideal IAR with ISR is a proper ideal.
Examples:
1) If R is commutative, R is a field if and only if I= {0} and I=R are the only ideals
2) the ideals of Z are exactly nZ={an: a e Z}, n=0
First Isomorphism Theorem: If \varphi: R \to R is a ring homomorphism then \varphi induces an isomorphism
\overline{\varphi}: \frac{P}{\ker \varphi} \xrightarrow{\sim} \operatorname{im} \varphi
 a+ker\varphi \mapsto \varphi(a)
Examples:
DLet R=C(R,R) and fix x & ER. Let I= { f & C(R,R): f(x) = 0} snow that I=R and determine P/I.
   Define ev_{x_0}: C(R,R) \longrightarrow R. This is a ring nomorphism and \ker(ev_{x_0})=1 so I=R and by the
    first isomorphism theorem, &= im(evx.)= R since vaeR, f(x)=aec(R,R)
2) Let R=C(IR,IR) and N>O then SNAR
3) I=Cc(R,R)=USN, where Cc(R,R) is the set of continuous functions with compact support is
   an ideal of R
4) If R is commutative and aek, then (a):=aR=Ear: reR3=R and is called the principal ideal
   generated by a
5) Let R=R[X] and I=(X^2+1). What is R/I?
   LOOK Q+ X+I \in \mathbb{R}/I, (X+I)^2+1+I=(X^2+1)+I=0+I SO (X+I)^2=-I
   Define \varphi: \mathbb{R}[x] \to \mathbb{C} then \ker \varphi = \mathbb{I} since if f(x) = (x^2 + 1)g(x) \in \mathbb{I} = 1 f(i) = (i^2 + 1)g(i) = 0
              f(x) \longmapsto f(i)
   => I = ker 4 and yg(x) = R[x], fg(x), r(x) = IR[x] such that g(x) = q(x)(x2+1)+r(x) where r(x)=0
   or deg(r(x)) < deg(q(x)). If q(i)=0, then r(i)=q(i)-q(i)(i^2+1)=0-0=0.
   If r(x) \neq 0, then r(x) = ax + b and a \cdot i + b = 0. a, b \in \mathbb{R} \Rightarrow i = \frac{-b}{a} \Rightarrow i \in \mathbb{R} which is a contradiction.
   => Ker 45 I.
   Im Ψ = C since for a+bie C, f(x)=a+bx gives Ψ(f(x))=a+bi.
   Thus by the first isomorphism theorem, P/I = C.
6) Let R = Q[x] and d be a squarefree integer. Then Q[x]/(x^2-D) \cong Q(\sqrt{d}).
September 29.2015
Proposition: If Z is a non-empty indexing set, R is a ring, and I = 2 V = Z, then DI= R
Definition: For any subset SSR, the ideal generated by S is (s) := \bigcap_{\substack{x \in \mathbb{R} \\ s \in \mathbb{I}}} \mathbb{I}^{\underline{a}} R.
If S = \{a_1, a_2, ...\} then (s) = (a_1, a_2, ...)
Example: If R is commutative and s={a3, then (s)=(a)={ra: reR3}
```

```
For R noncommutative (s)={ = ris; ri: ne Z=0, sies, ri, ri'e R}
Examples:
D For any ring R, (0)=0 and (1)=R
2) Let R=Z, if a,a2,..., are Z then (a,..., ar)=(gcd (a,..., ar))
Bezout's Identity: Let a, be IZ where a land b are not both zero. Then gcd (a, b) is the least
positive element of the form autby, u, v & Z and all other such elements are the multiples
of gcd (a,b).
→ Proof: Use the extended Euclidean Algorithm 🛮
Example: (6,8) = \{6u + 8v : u, v \in \mathbb{Z}\} = (acd(6,8)) = (2)
Theorem: Every ideal in Z is principle.
> Proof: If I=0, then I=(0). Let I ≠ 0 and let n be the least positive element of I.
   claim: I=(n)
   > Proof: neI => rneI Vne I => (n) SI.
     VaeI, Ja, re Z such that a = 9n+r and 04r = n.
     a & I, n & I => qn & I => a-qn = r & I and since n is mimimal such that n >0 and o < r < n => r = 0
     => a e (n) => I E (n) \( \overline{D} \)
Definition: An integral domain in which every ideal is principal is called a Principal Ideal
Domain (PID)
Definition: An ideal I=R is called finitely generated if Jan,..., an ER such that I=(a1,...,an)
Example: If R = \mathbb{C}[x_1, x_2, ...], then I = (x_1, x_2, ...) is not finitely generated.
Definition: A ring R is Noetherian if every I = R is finitely generated.
Hilbert Basis Theorem: If R is Noetherian then so is R[x]
Definition: Let Iar, Jar
   I+J= {a+b:aEI, bEJ3=({a+b:aEI, bEJ3)=(IUJ)4R
   IJ=(\{ab: aeI, beJ\}) = \{\sum_{i=1}^{n} a_ib_i: a_ieI, b_jeJ, ne\mathbb{Z}_{\geq 0}\} \neq R
Proposition: Let R be a ring. VI, JeR, IJEInJ
L> Proof: If a∈ I, b∈ J => ab ∈ In J □
```

```
Example: Let R= Z, I=(n), J=(m)
I+ J = {un+vm: u, v & Z3 = (gcd (m, n))
InJ = \{a \in \mathbb{Z} : m \mid a, n \mid a\} = (\ell cm (m, n))
4 e.g. If n=12, m=18, I+J=(6), IJ=(216), InJ=(36)
IJ=InJ if and only if mn=lcm(m,n) if and only if gcd(m,n)=1 if and only if I+J=Z
Proposition: If R is commutative, I, JeR and I+J=R, then IJ=InJ.
4) Proof: If I+J=R, JaeI, be J such that atb = 1. Let ceInJ, d=c. 1 = c(a+b) = ca+cb = ac+bc eIJ
   Since del, cej, bel 2
Definition: If R is commutative, I, J = R then I and J are called coprime if I+J=R.
Definition: Mar is a maximal ideal if its maximal within the set of proper ideals with
respect to inclusion S. I.e. if J=R and MSJ => M=J or J=R.
Example: Let R= Z. what are the maximal ideals?
(o) SI VIAR When is (n) S (m)?
when every multiple of n is a multiple of m i.e. when min. Thus maximal ideals are (p), where
p is prime.
Theorem: Every proper ideal is contained in a maximal ideal.
1-> Proof: Apply Zorn's Lemma. Let X be a non-empty partially ordered set such that every
   chain & e X has an upper bound. Then X has at least one maximal element. Let I = R, I \ R
   (SO R = 0). Let X= {J = R: I = J, J \ R = R , then X = O since I \ X .
   Let \( \) be a chain in X so \( \) = \( \) Ji: i \( \) Such that \( \) i, i \( \) Ji \( \) Ji \( \) Ji \( \) Ji.
   claim: & has an upper bound given by J U Ji
   → Proof: Clearly I$J and Ji$J
        i) 0 e J i V i => 0 e J => J = Ø
        ii) let a, be ] => 7 i, j such that a e Ji, be J; who assume Ji & Ji
           \Rightarrow a,b\in J_i \Rightarrow a-b\in J
        iii) if ae J => a e J; for some | => ra e J; S J YreR. Thus J & R.
           If J=R then I\in J=>I\in J; for some j=>J_j=R, but J_j is proper so J\neq R.
   Thus by Zorn's Lemma, JME X, ISM with M maximal.
```