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Ay_gﬁ 25,2015

Solvin omigls Bv Radicals

Given @ quadratic equation 0X*lox+¢=0, we can find the sdlutions using the quadratic formula o
et yoors: Jot{A  where Als the disCriminant (a=bxHac)
e

There 1S 0 Symmetty In the roots. If you know One root then you know the other
Example: I I+y2 1s one root, then 112 1S the other root of +he quadratic
There 13 “Galois Study" 1.e. the Study of +he Galois grovp
Definition: The @GAIBISIGBORNS a Permutation group of the roots of a polynomial
Similarly, we can consider cobic equations ax3+ox™cx+d=0 (involving Square and Cvbic roots)
and degree four polynomials (square and quartic roots)
=4
For a cubic equation:

Start with @, add YT and adjoin roots
ksl

Q-¥= QLYK= k(T K (¥7)
Con express root 0S n element of the upper Field

Gereralize - C. QUORMHWT)
c3 QDT
c, QO
o
o Q

adding 1§ a ¢cyclic group of order 3 Cle. €s). Adding Y™ Is a cyclic group of order 2
If you can Solve (1-e. write down roots/ radicals) then there \8 g field made from steps +hot the
roots lie in:

b 35 0r As are not built up oLt of cyclic groups Cle. not Solvable)
2 As 18 0 Simple group: 1S hot built up by Gnything but tself

Fundamental Group (Topology)
¥ X 13 0 “nice” fopological Space (ex: §!, the unit Circle). Attached 1o X 15 +he fundarmental group 0

Definition: The CORGAMBATANGIEOP measures the loops in x



Exomples
) Take a point and look Gt all of the loops +hat start and end ot +hat point

you can tave all the \obps and contract them down {o +hat point so the fundamental groop
1S the frivial group

2) Cannot Contract fo the point If the loop goes around the hole Since you will
get stuck nthe hole
L> Direction matters. Alsd, Qoing around +he same loop twice s different than Qoing avcund i once

I x5y IS 0 continuous function then there 18 a map of the fundamental groups Fx: TWHO—=TLLY)
L note: the grovp: operation works by equating two 1ops and the loop formed by both

The Structure of the fopological space IS reflected in the Structure of te grovps (covariant functor)

Definition: HOMBIORICAMARS can be defovmed 1o each other

There are Covering mMaps

Example: Y= 8 %}
Sl

Definition: e ORIVEFSAINESUEP Covers all other covers

Example: é
*I: [ e universal Cover for the Circie IS a copy of @
e?.l‘“: O S

Groups and CGrovp ACHONS

Definition: A @M@BPIS a set & and Q binary operation =:Gxa—G and an element eeh Sahisfying:
0) < 13/ associative
W) e 18 an \denhty
L e-0:0=06 Vaeh
L) existence oF inverses
bvoeh,Ibeq St ab3e=ba

Definition: A grovp & 1 @BEIIAKAT * 1S Commutative
b 0-b=b-a Vabeh

Definition: A grobp O ISEIRIfR I %<0 where & 1S the cardinality Or order (i-e. the humber of
elements)



Examples:
D (z,+,0)
“ Inverses denoted -a for0ezZ
) R+, 0)
3 (Wnz,+, 0)
> yclic group of order n (i-e. Cn) Since you Can take | and add 1o 1Se1F n fimes o gerall elements
DR, D where R=MR\{o}
5) (2% +,1) where B=111}
6) (Lnz*,, 1)

Tnere Qre OISO Symmetry Oroups

Examples:
D Snz L£:4l,..,n—1),..,n5: F s o bjjection] is agroup (the Ssymmetric oroup of degree n) with the
operation of function CompoSition and the identity function which Sends everything o fseif
2) More generally, If X (S Qny Set Sx=4F:x— x: 15 a bjjection3 s a group with Function Composition
3 The Grovp Dalbook vses Do) studies the rofational and reflective Symmetries (p=rotohion,
r=retlection) of +he equiloteral triangle: Da= £, p,p*, rrp,cp2h
) More generally, Dn (or D2n Gcording o the book) |ooks at the rotational Symimetries of the regular
n%on and has Size 2n (n rotations, n reflections )
BDn 1§ Called +he GilediGIRGOOP of degree n (or order 2n)
5) GLa(R)={2x2 veal matrices t detM# Dd’fg
6) 6Ly ()= 1222 Integer matrices: det Me1*= (13
bCon generalize fo nxn matrices

Homomor phisms

Wwe Can study an Ooject by studying how ewrything interacts with i+

Example: Da f 2
2 3

we 0et 4 map ?:Da—>8z that IS Such that ¢ (a-b)= $la)@lb)
L claim: P Is Injective
L Proof: IF| 9 (M Is the frivial permutation ((i.e. ®(£)=1D,then FvdFvy FV2)7V2, £(Vs)=Va where
Vi, N2, 0nd V3| are position vectors
Vi Ond v are albasis of |R* and #15 a linear transformation. Thus £lvid=Ve Ahd so F31d In Ds
We Know #D3z6 anQ # 33=3!=0.Thos Since 1S Injective =>#D2=b

Definition: Given fwo groups G and G',a 18 0 fuonction P:G—G' si.
Ploby= P(a)PLbY Vabe . A homomorphism 1S on@SERBIATSID If 3 46— G St Yo ¥=idu and
Pot=1d &' (equivalenty P 1S a bjjection
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Definition: An automorphism Of the form $(g)=h'gh, where het is fixed, is called anGRigR
automorphism

Example: Cg 1S On inner automorphism

Example: (=33, h=(12),h™= (12)

h(Dh™'=1 Yh

UDOD12)=012) AD(23)(12D=(12) (2 032)U2)=023)
(203 (12)=(23) 02) (123)012)=(132)

The inner gutomorphisms of an abelian grovp Map AN element 1o Ifsel®

Definition: A subset HEG,where G Is a group, 1S 0 GEBEEBER), denoted H< G, I1F (H, *lw, €) iS
itSelf o grovp

L>1.e. 1+ 18 0 Subset that1s 1tself a grovp with respect o the sSame binary operation and identity
as &

The Svlogrovp Tesk: He G 1s a subgrovp f and only 1
DHF D

()Y QbEH, ObeH Qn.e. VabeH a-6'e H
(i) YaeH, or'eH

LI G is finite , you only need +he firsr +wo

Example: Y&, 1154 G is a subgroup denoted 4 (or O (f Gis additive).
5 115 called e @FivialSvEoFOUR
Similarly, G¢G

L These are the only two Subsets thatare subgroups Y 6. Further, there are groups in which these
Qre the only Subgrovps

Definition: If Hetand H & G (e His a proper subset of &) +hen H is o GFEPEFISUBEGFE0PR
LTypically you wovld ask for any non-trivial proper SUbGroLPS

Examples:
D ALVH R £ S
2)The inner automorphisms of a group s dencted @RREED
b claim: Inn (&) £ At (&)
Proof:
1) Yoeh, Co€lnn(ed
W) let (g, Chn € 1NN (G) | then| CoP Cn=Cgn) Since glhali)g™= (gh)a @Y™
L) Cge\vm((n) hen Qg"= Cg? ElnN (&)
3 Z4R as additive groups
4) St (RS Galn (1R)
L Definition: GEURYF 1real nin moatrices m: detlm)=13
Proof:
L) det (ID =1 € SLn(R)
LO) let| AJR € SLnl®), ¥ren det(AR)=det(A)det(B)=\
({1 let | AE/SLn (R) then det (A= (det AY'=)

We can olso get subgrovps from NOMOmMorphisms. There are fwo IMmportant subgroups: the image
of a hompmorohiSm and the ¥Kernel of a homomorohism



DefiniHon: ¥ ¢:G-' i a grovp Nomomorphism, the image of ¥ denoted EAER:-= {9(g): g¢ &}
L MG

Motivation for the kernel: Giiven G homomorphism %:G—G', you get an equivalence velation on the
domain,&. For a,be G, define O~b if Pla)=P(b). Denocte the ser of equivalence classes by
G/n=1001: 060 where [o]=LbeG:bral. Then P induces a bijection @ :G/~—= im(¥)

Lal— ®(a)
(bijective from the definition of equivalence classes). The right hand side, Im(®),1S a group So the
bijection induces a group structure on the left hanad side, G/~

Another descripti ~
claim: 3 a sulogrovp K2G Sucth that a~b f and only If ak=bk (where ak=fak:4«e kY) \f and only if
0'b€ K. \n particular, fol=a k. ak=bk=> vk ek, ak=bk' for k'eL=> k¥ '=a"'b

Definition : The (EEFAEIIBER, denoted ker(¥), 1S +he above K. 1. [11F1k= k=9"'(1)

Proposition: Ker (<G
L Ker(9)=9"'({eY)

More generally, W H'€ @' then ¥T'(H<G (the COnverse iS not +rue)
Detinition: (o1=ak s called o CIEFNIEESED of K and &/~ 1s denoted G/k

More generally, & He(, define a~b f and only If 0™'b€ H f and only If aH=bH.
L The equivalence classes are called lef+ cosets and the set of them s denoted G/H

Question: For which H<G does (aH) (bH)= (ab)H and e=1H make G/H into a grouvp?
Aobstract answer: G/H 1S 0.group If and only If H 1s the kernel of some homomorphism ¢
L proof:
(<=) done|previovsly
(=) \f G/H s 0 Qrovp, define ¥:G— G/H | This |s by definition o homomarph ism.| ker(9)=H
ar— aH

concrete answer: when H is normal

Definition: H< G is called 0 (ABARAAINSBIBEFEOR), denoted, H2 G, F ¥geH gHG'SH (equivalenty gHg™=H)
where gHg'= {ghg™": heH)

Theorem: H 1S 0 Kernel it and only it H2G
L proof: [(exercise)
L> youv have 1o Show that e multiplication 1S well-defined 1e. consider whether aH=a'H and
bH=b'H means abH=a'b’H Making aH-bH=abH Is well-defined

Definition: The@AdEdct Hin & 1S 1G:H1=# G/H e the number of left cosets of H

Example: &=Ss, H=1), (1)), 1S HAG?

(DU U= (23)€ H=> H 1S not normal. Similarly any H= 11, (1Y 1S hot hormal. There 1S only one
non-frivial proper Stbgroup of $3.That IS, N= 1), (123), (132}

The first 1ISomorphism theorem: 1§ #:G— G'1s a homomorphism hen P induces an 1ISOMorphism
Q:(/ker () = \mLYP)



Example: what 1S Gln (R)/SLn LR)?
Oefine ¢: GLn(R)— &' Such that Ker(®)=SLy LR, then you can identify the quotient with the mLe).
Use det: Glin (R R* (1.e. the determinant) then Ker P=SLn (R) SO GLnlR)/SLn(R) = Im(det)= RX

Since \F re®* +hen (C| o).
dey O"'-D =r

Example: Is there a non-rivial homomorphism from Ss—> (a?

Since 4he only non-trivial proper normal sobgroup of S 18 N=11, (123),0132)3, We need ker (@)=N
what s G/w? 18 it Cs?

Cz has ho proper non-frivial Subgrovps but G/N only has two elements SO I+ cannot oe Ca.

September 1,2017
Grovp Actions

Definition: Let & be o grovp/and X be a set. A CEFNIGERBAD of G on X 1s a fonction (Cw* X— X
9, X)— gex
where gex 1S “g acting on X" satisfying:
()1X=% ¥ xE X
() Vg, .6 G and Yx€X,9,°(ga*x)3(gGa)* X
The set X 18 colled a@GESER we Say G acts on X, denoted G C X

Examples:
D G=8n, %=1,2,...,nY, then @ *xz ¢ (X)
2) 4=Dn, ¥=regular n-0on

L Proot:
Claim! LO‘STE 0‘9“
L> Prook: (aig 06 (X)=0° (g + %)= (4:g1) + %= | « %=X Similarly, (ogr© ) (X)= X

The data of a group action GxXx— X IS the Same as giving 0 homoMmorphism P:G—>Sx
g‘—) 0‘3

Definition: If & 8 a.grovp and X Is a sef, 8 homomorphism G— Sx IS Called a permutation
representation of G
b ¥t gives a concrete vepresentation of G

Example: Dn— Sn by \abe\\ing the vertices

Cayley's Theorem: Every Group 1S 0/ permytation Grovp
b Prook: & @G byl lef+ multiplication with g-h=gh. This gives a map 6 Sa and multiplication by
(18 0] bijection

Definition- An action GC X 18 called faitnfol i G— Sx IS injective, we Say that the map G 3 1Sa

faithful representation of G.The kernel of e action 1S ker (G C X)=kKer(a—> SX)

b Since the kernel of a homomorphism s trivial I and only I the map Is injective, the action
GCX 18 faithfu)l If the kernel 18 trivig)



Examples :
) Cayley's Theorem gives Ls that GCG by left multiplication 1s faithful
2Dn73n, n23 18 faithful where Dn 1S atting On the n vertices of +he regular n-gon

b Oh assignment we Saw this is not +rue for n=2
D G=83, x=112,33  If g=De G, (12)+3=3 but (12)+1=2#1 So GCX 1§ faithful
Definition: ge G acts trivially on xe X (f g-%=%. Jimilarly G acts trivially on X if g=x="xX ¥ge & VxeX
Example: G=Ss, X=11,2,35. (12) acts trivially on 3
Faithful means the only element that acts trivially on every XeX 1s 1€ &
Definition: If GC X,xe X. e Stabilizer of x (n &) 1S Staba ()=19€6: g+%=%} 1.e.the geG +hat acts
trivially on x Calso denoted Gix). The orbit of % (Lnder &) 1s Gx=1g-X:geG) (also denoted Orbe (X))
Example: G= S3 C 11,2,3}
S$tabsz (3)= {1, (1233 Orbsa (3)=11,2,3%= X
Stabss (=11, 013)} Orbss (2)= X
Stab sz (D= 11, (23} Orb Sz ()=
LThis Shows that elements Can have stabilizers but still have the action be faithfu
Proposition): Ker(G G X)) xr; Xs-fobc, (x)
Proposition:
LN XEX,SHaba (x)4 G (and Ofba(x) 1S a (-set)

Ly In fact; Orba(x) 1S the Smallest set containing xon which G aCts
(i) The Orbits OF the aCtHon partition X i

LThus any two orbits that share an element gre equal
(L) ¥ Gx=Grx'| then Stdba () and Stabg (x) are onjugate Ge.3geq such that gStaba () g =stabe (x!)

b Since conjugation 1 a bijection, this means they're 1somorphic
b Propf:

LN X, 1ESH0bn (X) SO Stabal(x)* @ . I 9,9' € Stabe (X) =2 (9o #% = G2 (f +X)= g+% =X = g9 Stabe (%) SO
Stabal(x) 18 closed|under multiplication. If g€ Staba (X), then Q1%=x and 01(g-x)=qI'* ¥
(g'ge%=(g'sx=>x2q's % 50 (' € Stabe (X)

() To show the equivalence classes|are an equivalence relation . Define xn! ¥ g€ G Such that
x'=Q+x. 00r claim |is $hat this|is an [equivalence relation and the equivalence Classes are the
Orbits! Since/the equivalence classes of any equivalence relation jportition the set.
reflexive: X=1+x SO A~%

Symmetric: t x'=g+x Hen g'ex'=x sp x'~%x tfiand only| if K ~x’
tronsitive: [If =g+ and K"=hex' then K"'=ngemx SO K~x|, Xk =X~ x"|and
(= Ex'e Xix'ax3=1g-x: gey=0x
(E) ¥ x=g+ % Ond h e Stolo bIx) then heX3x 8D X=g'eX and hgl*!=g]'»x' = gng*+%'s %' S0 he Stabe (x)
\f and only If| ghg'e Stab & (1"
Example: we saw for S3 @ 11,2,3) there IS one orbit S0 the stobilizers are all conjugate Li.e. 1ISOmorphic)




b Proy Proof): Start with an orbit of X av
g,°X >® | QpeX0 .
9~ ) of eac
520 —>° ) of x
939 —°° T
this | all [the elements of (. The numbe IS the|siz
Size of +he Stabilizer
b Proy and G x={ge :gex=x!3 (S0 Cryx = 1xx
(Eve brings « to Some element in 4 the
d # e SO I Wwe ishow | Y 4, 3 G hen w
X
O’ the other elements are g stab
there 1§ a |bijectior
a0 Gax' [where g 15 Fikeg
>9'¥
Crxx' T Stab (%) 15/ an inverse
hl— (o/y
Ap e's Theorem: If H<G then #G= Size 0
Size ¢
L Prog G then G 9°(g'H)=(gg
Stat JH:HI=H and Orba(4-H)=G/H S| =( > 4
Se 1S
Theore n Y xeX ther hatural bijectc ~ Orb
Finit ()= ¥O/ Staba(x) Le. the Orbit-
LPro 2 (0 and|define FgH)=g.x
el gh= then |9 h' for some h
= _If gH=0'H ,then g'=an" for h'e £
g =0+ Since b, (10 £ Q'H)=
Suory oG (1), 3g€ G SuCh that 4:g-% by defir
i - f(9'H) wts ghi=q'H
g% x> '€ Stabe (0=H => §lg'=)h fi h=
Re ion hns|an exrra property. Not Lagrang 2 ¢
Lookir map|\s detined, ¥¥ea and |v 5°g -
Since S tompatible with| te action . sa




Example: Tetrahedron (4 equilateral triangles)
w Let T (The Tetrahedral CGrroup) be the group of rotational Symmetries
of the tetrakedron lLe. T={ge SOs(R): g(T)=T} where 30s(R) IS +he
Special orthogonal group of 3x3 matrices 1e. ggT=T and det(g)=|
le. the refations fixing e origin, o, in [R®
V4 @uestion: What (8 T?

Let &=T, X= {vertices. Let v be +he top vertex. Stabxn (=11, p,p%...3 where
Vs @IS rotation Clockwise by 120° so # Staby (23,
Orbr (v) =X= #0rbw(v)=4.Thus by the orbit-Stabilizer theorem, #1T234=12
y Since we labelled the vertices wehave @ map $:T— S (the action map)

2

Question: Is the action faithful Le. 1S ¢ injective ?
let: g€ Such that gevesvi 1.e.geker(). 189=17
Think oF the vertices as position vecfors instead of points. Let the position vector of vi be wi then
QeNi=Ve > Q-Wi=Wi. Any three of these vectors form a basis of R 1.e. w,wz,wz form a basis=1g=T
Since I you have Q linear map that does nothing o a basis, i must be the identity
S Mo Sy, #Su=4!724,ancl #T212. By Logrange's Theorem, #T=12 or 24
@uestion Does there eXist an element in Sy not 1N T?

Yes (2) T (first day). You wovld have to Flip (34) = #T=12.Since An S ¥he only index two Subgrovp
OF ShD T2 Ay

Note: If you can take a grovp GNd Map i INTO Sn, you CaN knhow O lot about 1+

Example: cobe

. ~ | The symmetry group of the cube s denoted & and is called +he

i oCtahedral grovp Since the octahedron 1S dual to the coe. The notion

1 of duality Comes from the idea that an object comes from three sets
S Su 1 of objects: vertices (0 dimensional),edges (1 dimensional), and faces

- (2 dimensional). If you Switch ihe roles of the vertice s and faces of

the cube, you get an ottahedron (The doal of g tetrahedron 1S itself)

0=196 03 (R (L)L}

Stabg=Ll,p, p3 .5, p=roration by 120°

O'Cvertices: Orbe(v)-V= Lvertices| => #623-8=24
Theres hothing special about verfices. You could also use the faces (easier
way 1o See the stabilizer) to get 4-6=24,0r edges to get 2:12=24

eight vertices=>V: 6— s

Six faces=>F: 0— S

twelve edges=>E: 6— i

wovuld be easier 1o study faces Since there are less of them but Hheres an even Smaoller se+t
o study

You could act on the pairs of opposite faces (30of them) but this wovld give a map 1o 33
and #0224,#S3=6 which wouldn'+ help much .

Instead, consider x={pairs of opposite verticesy, #x=4 so :6— Su thus I ¢ I8 injective, then
Grw.



™en X=1{we-weyl

If g- Twi-wih= Twj, Wil Vi=1,2,34 hen 18 g=17
consider wywaWa.If 3¢=1,2,3 S4. gewe=we then WLOG g>Wa=-W2 SO

tl o) 0
9= O -1 0
@) 6} g

By definition detg=| =>WLOG g+W;=Wi, §-Wz=-W3
Now look at WiWa,wy 10 ge+ detg=1=>gewWy=-Wy but looking Gt Wa,Wz,Wy detg=-l1#| =€
SO g Wi=Wi Vi =>g=T=>0=3y

Class Equations

Let G be agrovp and X=0, then GCG by g-a=9ag™ (lef+ action)

Definition: A right action of G on X,denoted X9 G IS a function Atlp X Satistying:
,g — X

Ox'=% YxEX

() (xa)=x9" yae X, ¥g,her

Thus GG by a9:=g'ag since (A)¥"=(gny"a(gh=h"g'agh=(g'ag)"= (o?)"
b note: i you have a group and you see this exponent noration, it means conjugation

Definition: An orbi+ of the above action 18 called conjugacy CIOSS 1€. the conjugacy class of a
s 19709:9€ &Y

L conjugacy class of 1 1s |

> the conjugacy closs of zez(a) Is {2}

L>note: the Conjugacy closs of a contains 1™a 1=1a%

L> can never contain everything (1 isin s own closs)

Definition: The Stabilizer of the action, Staba (0)=1ge6: glag=al=1get: 09=9a’% IS the Centralizer.
The ¥ernel s 4geG: g'ag=a vaexy={get: 09790 VaehLy=2(&)< the center (notation used prevjously)

IF x=G=Llorbits, hote: #orbalg)=] #f ge 2(a)

Theorem (Closs Equation): ¥ & 18 a finite grovp and gy, greG be a Set of representative § of +the
Conjugacy Classes that arent In 2(0), HeN ye-uaiq)+ Sfa:ce, (9]
=) ¢

bnote: #2(0) and [G:Ce(gil divide #G
L Proof: #G= Z#orbits. IF #0vba(g)=1 => ge 26 So (collect the orbits of Size onel otherwise,

L HG || ot Stabag0)=Calod) and | #G ..\ 5 by definition SO
4 Orb( ) FSioha a0 di=Lely i L

[6'Lolgi))= #0rba (90
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Example: Symmetries of the icosahedron
let I=icosahedron group=rotational symmetries in R2 of the itosahedron= rofational symmetries
of the dpdecahedron= rotational symmetries of the dodecahedron (since they are dual)
The dodecahedron Consists of f2 faces that gre reqular 5-gons, 30 edges, and 20 vertices.
lcosahedron 1S 20 equilateral triangles (note: this example 1S covered in Section b2 of Artin's
algebra)
Question: For which n do we have a helpful map I—3n?
Trick: There are five cobes Inscribed inside o dodecahedron and I permutes the cubes
Qiving Q map P:I—Se.
Question: what |s #I7
We can Lse +he Orbit-stabilizer theprem
Act on the 12 faces: the stabilizer of aface 1S S rotations and the orbit s all 12 faces
= $I=512=00.
I¥ we show the Map s injective the It's As. we do this by showing that 113.and T are the only
normal Subgroups of T, thus any map from I 4o another group IS €ither Injedtive or the trivial
mMap.-
L (Theorem: The class equation of I 1S 00=1+15+20+R+2)
L Claim: There (re no proper nontrivial Sulogroups
L> proof:| A normall Sblogroup 1S a| Lnion of Conjugacy classes and | contains 1% Thos If N2 T
then [#N=11(sum of nombers [from| £16,20,12,12%)(S+ #N|60.This Is|impossiblel unle s
#N=1,00
Therefore ker(%)=1,T. However, any nontrivial rotation of a face gives a nontrivial permutation
of the cubes => kerP+I. Thus Kerf=]=>1 35 and P(I) has index 2 => P:1= As
b In fact, ¥ An, n25, there aré no hontrivial proper normal Subgroups

class equation: You Can partition elements by their order. Yoed, #o=#a9 ¥geq
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Examples:
D; \a 02 3)7&53 So the constituents are C3 and C-.
<0 23)) 1§ the only normal sbbgroup So this 1S the Only COMPoSition serie s
2 Z/,z haS more than one option:
02(2 Co=%lon
Cz C2

022 Co=Dog
C2 C>

3)12As Since As 18 Simple
H) 12Ag2 Sa.

In fact, for N2 5 we have 12An2dn
5) 14<rHadr» 2Dy

C2 C2

C2

12¢sH2a s, r)2
1 Ca ) > Dl-l

Definition: A group 1S Solvable I its Jordan- Holder Congtitvents are all ¢yclic
Example: Dy,$3,Ce are solvable

September 10, 2019

Fixed Points of P Groups

Definition: Let &1 be O grovp. ¥ GC X, a fixed point 18 xe X Such that g-%=x Yge&.The set of
Fixed points 1s denoted X

Definition: Fix a prime p. A finite grovp & Is called a p-grovp \* HG=p".

Example: Gi=Ca (p=12), C,= 11,0}, Let G E X, X finite.

Question: What are the possible Orbit Sizes?

Any orbit 1s 1%,0: %Y SO the Orbit S either size | or 2.

Bither X=c-x => X6 X or X#e-% 2> #G%=2 30 #X=#X"(mod 2.
Therefore, 1f #X 18 odd +here 1S hecessarily a fixed point.

L Fixed points Qre elements with Orbit size |

Fixed Point Theorem: Let p be prime, & be & p-grovp, and & C X where X 18 finite. Then
#1092 #X (mod P
L Proot: X)1s o disjoint bnion| of| the orbits and| #Gx e L& Stab g (.’XY.\I#C":PF- Therefore
{0 I AEX®
ttC""{c\msible by P, W xg X
SO| # K= ﬁx‘ﬂ pl.. )< nonsingleton oroits
union | of| singleton orbits

Corollary: ¥ G s a p-grovp and G C X, with X finite and pf #X,en +here 1s olways o fixed
point.



Theorem: If (1S 0 P-group, then Z(ED* 1Y

L Proof:|let Xz GALYY N KOG by Conjugation.
L, This 1s valid since if G acks on 0 set you Can remove an entire orbit and G will skl act

on +he set.

pJ(H’X=P"-I.Thos J a fixed point 2e X 1el 32€/G ,[2¥| 34/9'20F 2 ¥ 06& =2/ 23=02

=2 ¢ Z2(&) ond/z * |

Lagrange!s Theorem: 1§ H<G, & o grovp, then #h|#G

"
Q
BN

Question: \S +here a converse? Le. ¥ dl# G, does IH<G Such +hat ®H

No.

Exomple: G=Ay. ®Ayu=12 oot F HEAy S4. #H=0

Cabchy's Theorem : If pisia prime and pl#G then 3 geb s+ #9=p
L This 1S 0 partial corverse ‘o Lagrange f ¥imes
L | Proof: Let Cp® X where| X3 1(g,,02,--,9a) € G 6329 pr  INLL),. L 1} Jand let [Cp= <o
with | o°» (9,,...,4p)= (9p,9.,92, .-, gp-1D Le. a right Cyclic Shift. To Show this 18 an action
we need 10 show 0ed,a2--0p-1=1 A8 ¥he grovp Mmay not be| alelian.
Note that 8p0,92- Gp4= 19p/(8,92/ §p)8p[= GpUNQp™ = 1. TNUS this 1§ an action.
Forther, #X=#G""-1 becquse we can picid G),. ., Gp-1| freely from &P ot then go=(g,,...,Gp4)".
Since| p #G, pf#X 5o [3 d Tilxed PD‘TH- % & X 7. Thos 'X=(q,,gz,...,59‘>=cr-x= (gp,q\,gq_,.. ,0lp-1)
Therefore % 19 of +he form (849,,---1G:D. Also/the product 1§ ) |SD Q. |, af=\|=> #q,=p A
P times
Theorem: A grovp of order p* s ISOmorphic 1o Cp* o CpxCp
L Thevefore tt 1S Necessarily abelian
L Proot: 206 * 1Y | so| B 2(6)|=p or p?.
If % 2L =p? then | G 2L6) |G s Qbelian.
Otherwisel Za)2lt and # Y=y * Dz P/p E B =25/wd 1s eyclic & Is abelian.
¥ 3get st. Fg=p* then (1=(<gH = Cp2. Otherwise ¥g#1,#g=p.
let 0| and H,344 2 =<0,") =1 ). P Let Q2 € G\H, |, H2=4Q2)5<Ga%) j=1,... [p-] SO c‘:!,‘#gf'
for 12¢,32P-1 =7 H{Nn Haz 11% So | HH2: 10182353 Gr 040,y £p-I| With
#H M, = FH #Ha |_ 2
#H\ N # Ha
The fuonction |P:(G [— H{xHa2 ~er - eln ) | 18 Wwell-defined |and a bijection.
3593 > (d5,d,5) 1 P ?

Lgr.
Also 09945 9510:8)7 ©(9 g ¢la A9 7 (9%, g ) = P9 4D 9 (99"

=9 1S @ homothorpnism and H.xHa% (pxCp = (2 CpxCp B2

e

Sylow Theorems

Theorem: ¥ p 1S prime. and P l#G then IHEG SH. #H=p

o)

v

L> This 15 a partial Converse to Lagrange. Cayley's Theorem 1s j=1.

NG

L |Proof = By Indoction

Definition: Let G loe Finite and p be prime. A p-subgrovp of G 1s HEG s4. #H=p’ for jz2I.

¥ pli#G Cle #G=p"m , Prm) then a svbgroup of order p7 s called @ Sylow p-svbgroup.

The set of Sylow p-svlgrovps of G 1s denoted Sylp (&) . Further Nplad: p (&) (sometimes

54
It
#
<

Just dencted ned



Sylow Theorems: Let #G=p'm, ptm

)
(I NpleZ). In fack V) st. 02j4n, IHL G S+ HH=p
L |Proof: To shol HeG  #H=p", lcr then |3H',H

Lt

(1,3

H'eG with (W:H)=p lel #H'

N
3®)
s

O
let HCO/n by hegqH=NgH. (Note:he(IH)=IHD
#X =[Gl |ond Ler=>plLGiH)

reX* mean )H 84| hoHzgH YheH W& haleaH Yh #f eH yh & 0'Hq3H [F$ QeN o (H)

®,
ny

q
C
(

S
so/ xH=NeMA e &/

wNaUDAL = # X% = #X2 L6 H) Umnod pY=> Pl INe/CHY: H)

Note{ HeNa(HY so Na(W/u )s 0 grovp [wikh | pl#NGHY/H So by [Cavchy's Theoverm 3[R 'e Nl

S# #Fi'=p.Let H' be the Inversel image OF H7 in Ne(H) ther [w':H)=p and H'< &. Induetion
(IL) Al Sylow P-subgrovps are conjugate. In fact YPE Sylp(t) and WA €0 (s, # Q=p’,39¢ G St

~7

(3]
~
o
w,

1}
—~
i
©

b |Proot:|let P/QeSylpl&), P+ Q and |led QC &/p by Q- (9P) | pt#G/p|S0 I ge b $4.

' and Since €o jugation 18 @

g
46O

¢
O
¢
w

Pg”’ Nqle @ = Q

q9 PgP| ¥qeld > qqegP ¥q e@ =q
bijection $o ¥QI%#9Pg7= @=qPg

(T Np = (modp). In fact, Ne= LG Na (]

or any Pe Sylp(&) and npl m.

‘Septrember 16,2015

Proof] off Sylow Theorem [(TI): |Let Pe8ylp(a) and|Sylpl@)D P by conjugation. By the Ffived point

M
E:3
U
<

theorerm, Np F # Sylp (LD ip(&DT (Mod p]
caim: 3ylp (&)P= 1PY

L Proof: Q& Sylp (& ek g'2g=Q YgeP \ff |PSNe (@) W P15 a |SYiow prsubgroup of N (&)
Sinc ﬂNe,((gﬂprm, @2 Q by 13 allso a [Sylow p-subgroup of Nal®) s

1%
Q
)

3 ¢
[<)
=]
(@]
Z
o
a1

300eNal@) s¥. 95’ ®Qe=P =) Q=P |V

Nolo tonsider Sylp(@19 G by Conjugation | with|one orbit. Stabin($)3 NG (S) ¥SE£G so by the

: 7

Ornbit- Stalbilizer Theorem | np= #Sylp()= HOrba/(P)=(h: Stale (PY1= [GiNG(P)]

= npl M| Sipce #G3p M land Since [P S Na(P), #Nal(P)=pTm! S0
n :ﬂ'C) =M SO 'Ng= '
Pranpe (e T[]
Theorem - \f p,q Qre primes, p<q ,q#1(mod p) then levery grovp of Size p’q IS Qbelian
(so \f #(=p*q +then GE Cp**(q 2C0pq Or 6= CpxCp¥Lq = CpxCpg)
L |Prook t np=1(modp) [and Npllg =3 1p =1 Sinte 9 15 prime |and g #1(mod p)
Claim : g =
L | Pr Ng =1 (mod q) and |nqlpt so Ng =1,p,p% Ng# P Since p<g 30 p#/l(mod ). \f Ng=p?
the n| p*=1 (mod @) = |qlip™i= (p-NIp+1D =2 qlp-1 ar glp+). gt p-|Since qvp and| pilcp
80/ glp#l butgap => g=p+l =>q =) (mod| p) which \s g contradiction v
By Assignment 3, \f np=l and Ng=Il, Pe Sylp (), ReSylg(E) then ¥geP, he®,gh=hg.
#P=p2 = P=Cp lor |Cp/XCp AN #Q=p S0 Q2 Cp and PR G Sinte #PHR=#C and PNGE]




Semi di r

Motivating Example: Let R be q field (or a commutative ring with 1) and let v be an n-dimensiopal

R-veclor so V=R”, Hen GLVE GLa(R) where

(56 nxn INvertible matrices).

An GEFRSIREr FaASTOrMGROAYOf V 1S | £V —V s+ f(v)=Av+b where A& Mnn (B) bEV.

If £ =Av+o, g =A'V+ !, Fod (W= A(A Y+ +hbT(AADV+ (b+AL') SO F is invertible W A

IS invertible .

@FERE) - the grovp of invertible affine linear transforma tions = 1£: V=V : Ae Glla (RS

where the operation 15 function Wmpoesition and f(¥v)=Vv s the identity.

AS 0 Set, AHn ()= Ly (R)* V= (A, b): A GLa(R), bEV S but the group Gln (RIXV has

operation (Ab)- (A lb')= (AA, b+ B)# (AA'b+Al') SD the grovp Is hot +he direct product of

the groups. Also V=1Th% Ve ARFR (R), V4 AFFR(R) SO (A (T, (A, )= (A'A,.. D=(T,..)EV

but GLA(R)=GLAR)* 10Y S AR (R ARFA (R) Since (A, LY'(A',0) (A= (A,bY'(A'A A= (A"A'A,..)

but in H,XHa both H,,Ha2 H X Hay

L we use whot 1S called a semi-direct product o generalize the direct product to get
ATEn(R)= VA (LN (R)

Theorem: Let Nand K oe +wo /groups ond KEN (e, we have a homomorphism ®: k— Autnd)
Ler G=N*k as a set and define (n,,ki)-(Nak2)=(NCki1N2), kkq). This defines a group

strocture on| GeNx¥ dencted NAK (or NXRek) called the GERidiFeaFIpradbEFIGRINIGhnaNE
'With| respect fro ¢,

Furthermore #G=#K #N. ldentifying K and kx1€G,and N and 1*INeG \we have that ¥NE&G,
N2G, 0nd Nnk=\. LasHy ken=%knk’ neN
L If ¥ne action 1S ¥he #rivial action, then is s just the cross product

Example: Let N e abelian and ¥=Ca =<0, Define €:K—>Aut (N) | (if a/group IS Okelian +hen

or— (n—n)

inversion 18 an aviomorphism)

If N=Cm=4r)> #hen Cm X Ca has Size 2m, On elervent (6;1) S+ (@, 1)*=1, On element (),r) s,
O,NM=1,and ora’=g-r=r' so CmX L% Dm

Definition: Let N,k £G. & 1S the internal direct product of N and k \f
O G2KN (knN=1)
L)) The map ¥N— Kx N IS an \somorphism

Definition: Lex N,¥ ¢ . G S an internal semidirect product if
L) G=¥N (kON=1D)
LD) The map EN— Nxe K is an isomorphism where 9) (n) = knk™

Theorem: \f G 1S/a grovp and Nk £G, then KN & ExN|iff
DEN2 G
W) KNN= )

G s the internal direct product iff we also have
LL) HKHN = # G

Example: let n=2m, m odd (.e. n=2(mod YD) and consider Dn. #Dn=2n=Ym. Le+ N=<S, r?>
(s reflection, r rotation) and t=<rmy =11, rMYy N 4Dpn Since [(On:N1=2 and K2 Dn Since
K=Z(0n). Nnk=| Since M 1S odd. N Dnj2 SO ¥FN®HK=N-2=2N=4%Dn SO Dn®NxY ™ Dnjax Ca



Theorem: If N,k< G, then N2 NAK (§f

W ed G
LL) NNhg= |
GENRVY ff we also have
ClL) HKHN= #(0

Example: Affn(R) = R"A Giln (R)

Definition: ¥ HEG, then k<G s called ¥he complement of H in G if G=HK ond Kok =
L So & is a nontrivial Semi-direct product iff 3 a proper nontrivial subgroup that has a
complement

Example: (G=C4=4¥). The only Subgroups of G are 11%,£¥*), Cy. <83 has ho complement+ $o
Cy \s not a (nontrivial) semidirect product.

September 13,2015

Theorem: There are S
* CyxCa2Cia
® CaxCyxCa® Cat (e
®* Ay
* Do
®* (aXCy(if e Cuy,TeCs, ael=%2)
& Prook: Let K e |a [Sylow 2-Sbbgrovp| and [N be| a |Sylou
N2 =\(mod2) and N[ 3 P Na=) or 3; Nz 2 1tMod ) and Nz
FK=Y=d K%Ly Or CoxCa  BN=3=DN2Ca

cldim | ; One jof N por K IS normal

der 12 (up to isomorphismd:

&)
:
n
S
q

;ubgrou .

—[C
e
A

L1t NG [then [na=4, N\=N,N2,Nz3,Nul Since Hns\ are order 3 there| are ho hontrivial
proper |Subgroups|so NLANj=1, 4% =) # Vi Ni=1+4i{23Q . There dre| 3 elements |eft.
K has order 4 so KNN (] So/these 3 elements|are K\L113=> el U2A G v
4

case|l:N,kK2G F (1S abelian=p G KX N Since KnN=), HEH#N=#0O, N.K
case|2: k4t N4G|So Na*|l thus Nazl.|Llet Sylalt 9 Gy donjugation. we get [9: (= Sy.
¥ we show that | fis [injective we get G2 Ay |Sinceg #GF12 and |G maps isomorphically
into 8y.

ia
<

ker 9= /), Stabel (N |; #Stabt (N # Db #6 ;| #h=1, #Orbel (ND=4 B> # Stalie (i) =3
Since we are a¢HNg by |conugation,| Stabje (INiD=Ng(NDZNi! HNiz3+#NgINL)
=7 Stabja (NOY= N = Ker| 9= D Ni= L13 =9 s injective =3 G2 |AY

case |3 N4/G [k G
Let NS k by Conjugatipn| 1.e. ken=%kn%k™"| Note that ¥nK'#n|Since that woold mean
n=nk= [ is dbelian _which 1S alContradiction. So ¥re| action 1S nontrivial.
case|a: k¥ CixQa
Aot (C2)= 1id, %} where| Ca= £¥)

(3 and 4 (N=B*=3 !
e have | P:[xk——Aut/(ND and 3 kol ¥

"
N

Since +he |qction s hontrivial; w S+ P(ko)=Y €.
Yon Keo'=nl. AlsolI kel S/ PN =1 kiE 1 Cif PUI=N, k=Yoo= P(EKDE W ={d D> Xi=kKe)
(note: we |ovld stopland say G= NAk but we/continue 1o [Shaw its De)

Lek X=%n ,# A= dem (KL #N)F 6 KdX Lo |5 Yok iNKS'= K Ko Ke'= K™= 14, | (Since
Q)= 1P LN l=n=%n=n%, YneN)E N4 (Since %3k, £ ()™

Let y=%o then X,y ,A°=1, y*=], yxy =% =1 De = G and Since| #Du=#H G P Do G




case |b k= Cq

Let k=4, N=Ly7 ! we Know [xy#VX Since |G is not abelian
= xyx1=y' = G=NAgN | where ©:x‘w W= G2 Ca N0y, called the @iEYEHEIELBIGE
of order 12.
G- Sets
Definition: Let X loe a (lef+) (-set. A subset Ye X is called (GESTEABIE) (or GRINVARIGGS) \f G-YeY Cie
c

¥get,VyeY, g-yeY). A (GESOBSEDOF X is YeX

+hat is a (-set under the same action

Theorem: A subset|Y<X lis a G-subset if and only if Y is &-sStable.("Closvre under ackon™)

Definition: Let X,Y be two G-sets. A function £: X—Y is called o GHEHPHISHANGENGESEES (or o

|94

-

)

v/
{

¥ VgeG VaxexX, F(g-x)=g- f(x

Definition: The set of (:-maps X—Y is denoted TEGPAEID. £ €Mapa(X,Y) is

-17
ol
-2
m
=

ape (X,Y) such that fof=idy and Fef = idx

Theorem: feMap a (X,Y) is| an isomorphism 1 and ony it Fis a bijection.

Construction: W I is a set and Xiisa G-set Yie I, then y=Lly; isa G-set

L Note: \f £i:Xc— Xi' is Qn isomovphism ¥iel #nen £:X— x'=LIX{' is an isomorphism where

o

F)=Fx() if A=%xieXi

Proposition: Let X be a| Grrset

LYEX is a Grsubset if and only if Y is @ union of orbits

\

() VAeX, Orba (02 %/stabe (10 aé G-sets

L | Proof of (L)} Let H=Stabe (x) and define & ©/u

Orbc (X)) . we| showed| (on Yo3)

1l
i

9H

that f is a wellideFined| bjjection.

)

Let g ¥eC. fil¥1(gH)) = f(¥gH)= (89)-% = ¥-(9-X)=]¥-F(gH)
=3 f is G-equivaviant.

Definition: A Grset, X, is called GFANSHINE it there is only one orbit

L, \f X is transitive. +hen it is ©/M for some H

Structore Theorem for G- Sets: \f X is @ Gr-set then Ja/set Tand Hi &G vieT such that Xz U Gl

tel

L | Proot: Let 1= {orba (%) %€ x5 and| le} %ie { ((=Orba (%)) VieI,then X= L Orbe (x:i.

N

Let Hiz|Stabe (hi) then Fi&/mi == Orba (Xi)|which gives #: L /mi= L Orba (xi)7 X

fe
[ - N

construction: Let X,Y be Grsets and Map(x,Y)=14: Xx—Y : £ is a functiond. Define GC Map (X,Y)
‘ S

by (g° P)x)=9-(F(g'-x)) ("g-F=gfg"'").This makes Map(X,Y) a G-set!
(

(1]
N

(gn)-F(X)

L Proot: 15§ (91Ch #NM)=9- (h- £ XD=9* Un-F (g7 -%)) 2 gh- FLLGhY]-X)

"
4

Proposition: Mopa(X, )= Map (L Y)? & fixed points
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Ringil r

Definition : AIIAGPIS 0 set R with two binary operations + ond «, and elements 0,2¢ R (maybe

0=1) satisfying:

0 (R+,0) iS an abelian grouvp:

o) + is associative: a+(b+' o= (arb)+ C

©) D is the identit

) 3 addwtive inverses

d) + is commutative

L) \f 2% 0, (R\{c},*,1) IS @ monoid, Le. a grovp that may not have inverses:
0) - is associative: O-(b:c)=(a-0b)-C

b) 1 isanidentity: 1-a=a:=a-

o

1
¢ Distributivity - 0-(b+c)=a-b*a-
(atb) Cc=a+*c+b

R is calle

(4%

d COMMUTaHIVe it - is commutative L.e. A*b=bra ¥a,b

Example: Z, Z/hz, @, R, €,R(X], Clx,y1,Mn (R), 1 (the quaternion ring /algebra) are all rings

Definition: An(@IBEBFAPsatisfies (i) and Cic)
L Dummit and Foote's ri ng is our ‘associative a\gebra' Cor a“rng” 1.0 ring without identity)

Remarkl: Some people require| 10/ Allouwing 1=0 implies the existence| of only jong gxtra [rin
the @ERIFIAG denoted D=10Y

w

Examples: The following are algebros:

* Octonions (have 1 but not associative)

Lie algebras e.g. Mn(R) with vsval addition but the product is denoted [A,B]=AB-BA.
Not associative and no identity 4

*  Jordan algebra S

*  Composition algebras

Definition: A non-2ero ring R such that Vo*aeR, a’exists (0"'a=1=aa™ is called O @iviSioR»
CC

@ingp Cor o@EEIIRIEd). A commutative division ring is called a field.

Oefinition: A commutative non-; Q +he (COREENGHDANPFBRERY, 10. Yo b,CER,

0*0:! O*b=0:C=>b=C/, S Called d

Example Z/,z is not an integral domain since 2:3=2-0 butr 03




Examples:
NDZisan in+egra| domain but not a field (2022 or 2a4-2 or 2a=0, No inverses)
2)Q,MR,0ond € are fields
2 %nz is a commutative ring. & n is composite,Ynz is not an integral domain
4) Ypz is q Field for p, prime
5) Hamilton's Quaternions, M is not commutative.

H={atbi+cj+d% :0,b,c,d ERY

=224, ki -k, jkE L Ko=), K, LK= )

e norm is N(g)=a%b*+c*+d% G=a-bi-c)-d K =>N(9)=93=099

Ly Note: N(g)=0 it and only it =0 so (£ 9#0,0"'= V/nlg) =2 His adivision rin
) IF deZ and d is not a square, then @U4) is a ¥ield , i+ is Called the quadratic Field.
Q3)={a+bld: 0/beQY. 1§ aza+bid, &=0-bid, N(®=aX =0 bd.
L> Note: N()=0 if and on\y if d=0 Sb for a0, &= “/Nia)
#) Let Abe aring. R=Mn(A) is a ring where i¥ MER, (qu Qrz - 0.-n>

M= ¢ , GijEA

Ony ---- - Onn
IF MM'ER, M+M'= (Qij+0'¢;)

0... O 10--0
o= : i) asr=[0%.
o... 0/ O L., 1

1. .o = 2
M-M's(ciy) where Ciy= E. Ok O'lcj

L [ This is not necessarily Commputative or a division ring
§) Let A 'be o commutative ring. Then Alx], Le. the polynomials over A, form a ring
Am={PL'x)=ao+a.x+...+a,,fx":a;eA,neZzo’3=iptx)=§»°am°: 0i€A,0:#0 for all but finitely many (3

I£ PX), Q(X) e ALX]), P(x)+QLx)=.§°LaL+bc)'xi I POORMR) = 3 Ci X where cc=:z°an bi-k
(R4 =

L20

D If X is any set and A is any ring, Map (X A) is @ ring with (F+r(x)= LX) +g (0 and (§-g)x)=Fhdg(),
0(%)-0, AN)=1

L eg. & x=IR (or any topological space) R=CLX,R)=1#: X—R: § is Continuous} is a ring. W is
Commutative but ot an integral domain since for example

P l > . | 20 | but neitheris 0.
10. Let I/be GN indexing set ond R be rings Viel. Then l.'Te\'IRc isa ring .

Cadier *(bi) tex= (Aitbi)ier () (bd)=(aibi), 0=(0,...,0),1=(1,...,2)
If §I=2,+his iS hot an integral domain

Definition: %0 Is 0 2EFONAIVISER) it 3 b+O such that a-b=0 Or b+a=0
Example: 2 in %oz s a zero/divisor since 2:3=0

Definition: IFR+ 0 ,0eR is a @i i a' existS. The [set of units is denoted @
Proposition: 2% is a group under muHiplication

Proposition: If R+ 0, 2ero divisors cant be units



Examples:
OYAEERAL
2) F*=F\{o% it F is a Field
3) For nz2, (Zha)={ae¥Yna: 9ed Ca n)=13. The zero divisors are the nonzerp, non-units Le. a
such that gedan) 2|
4) For C(R,R), f(x) =% 1S not a unit but also not a zero-divisor. It is not a vnit since f0)=0.
I+ is hot a zero-divisor Since F(x)g(_n:o = 9(x)=0 for x+0 but g iS continuous 'so
Limig)=0(0)=0 = g)=p
x—o ¥ - T
Proposition - If R is O commutative ring, then R is an integral domain i and only if R
has no zerp-divisors.
Proposition: A finite integral domain is a field
L | Proot: Let @ €R a*0 jand La:R—R|. Since R i an integral domain, La is linjectivg and|since
X+—> ax
R is finjite , %a IS Spriective
=3I xeR such that La(X)=ax=| &
Remar k (Wedderburn): A finite division ring 1s @ Field.
Definition: Let R,R' be two rings. A function ¥:R—R'isa ! if:
VIS 0 grovp homomor hism for (R,+ 0)—(R)+ 0) 1.e. Pla+b)=P(a)+P(b)
(L) Pla-b) = P (b)
(wl) P(=1
L> The book doesn't require (Lii)
¢ is an (SOABEPAIS it 3V R'— R homomorphism such that PeM=ide' and ¥o¥P= ide
Sepiember 24,2015
Examples:
) 21— Q,Z— %z are homomorphisms
2)let T be a set and Ri be rings VoeI.let R=TTRL.If Je T then T;: R— R iSa homomorphism
Y el . (avy— a; :
S)CP:‘HL’M’L(G') with ¢ o+bL+C\+ Wenl ! °\+k/[' o‘\-g-l‘/o '|\-g-d/o L\
TC UTL =) Ul\o ‘} '-'\-o “L/ \r\~ 1 0/ V\- b O}
is an injective_homomor phism.
Definition: A suloset S<sR is a denoted S<R, if (S,+,7,0,1)is a ring.
% The identity of S needs +o be the identity of R
Proposition: S<R is a sobring if and only if ¥a,bes:
L) atb €S
L) -ae S
Wi abe S
w)le S




Examples:
DZ:@eR<C <H
Q) If deZ is Squarefree then z({d1=1a+b{d a,be 23<a({ad)
e.S. ZL) <@y | (d=-D. 200 is caled +he ¢.Q‘b§iar{ |r*-|-e$er$. If d=-3 +then Z[{2] sQ(F—sﬂ) but
in fact w:-lzﬁ‘ Py Id=u but Z[wl=fa+bw:a,beZzi2Q () (note: w3=\’ W= e°"3)
2

Z[w) is called +he EiSSASIEIANIAIEGERS.

Z[_l%} {a+b("%> 1a,be l} iISnota Subring of QL)

In genera), let EG' , D=3,3(mod 4) | then Z(6)={a+b0:a,be2} ¢ Q)
0=

‘L?_@ D=1lmod 4)

> z([6] is the maximal ring of this form
3Let p be prime and Z(P)::§% ¢ @ :gedla,b)=1, Pi’b} then Zg» < @ called +he (6CaliZaHi6RIGH

zatp
4) Let R=C(R,R).Fix N>0 and et Sn=1fe CUR,R): £(x)=0 for 1%I>N3. K can be shown that
f.9€ Sn then £+9e Sy, fgedn, 0eSn and if 1N(,():§ 1, IxlsN| then In-£=f:F1n YFeSn
o, IXI»N

Hus S is a ring with identity In bot An*1ER(1€Sn) SO Sn IS NOt A subring of R.
Definition: Tne image of a homomorphisim ®:R—>R' is im (4= {9 rer’
Proposition | im ()< R

Definition: The Kernel of a homomorphism 9:R—R' is ker®=1reR: P(r)=0%=%"(0)
L Ker ()2 (R,*, 0) (as a subgrovp)

Question: Is Ker(¥)<Rr?
Answer: NOo unless R'=0 Since @(1)= 1+0 if R'+0 so 1&Ker(¥)

Let F/kere = lett cosets of ker®={a+1: aeRY where I=Ker?. This is an alelian Qroup with
(0+D)+(b+I)= (arb)+ T
Question: Is ®/z a ring with (a+1)-(b+1)=(a-b)+ T ?
Answer: yes Since ¥: 72— im? isa bijection so the structure on the left is the

a+It+— ?(a)
Corresponding ring structure on the right. Conversely, when is an additive subgrovp ISR Such
that ¥/1 is a ring with (a+I)-(b+I)= ab+I and 1:1+L7?

Abstract Characterization: If and only if T=ker? for some ring homomorphism P:R— R’
L P:R—PB/r kere-1

Concrete Characteristic: If and only i VreR,Yael, ra and areI le."I absorbs products"
Definition: Such an L<R asabove is called a (two-sided) ideal of R, denoted I2R,
Proposition: TR is an idea) if and only if

DT+ g

(WVa,bel, arb€eL
Wi) YaeT, vreR,| ar,rael



Definition: |f T2R, +hen %z is called +he quotient ring of R by T

Example: For all rings R, T:{032R and R2 R. 103 is called +he fivialidea) and =R is called +he
isince if T2R then I=R \f and only if JueR* with UeT. ®/503=R and ®¥e = 0.

Definition: An ideal T2R with IR IS a proper ideal.

Examples:

D 1F R is commotative,R is a field it and only if I={0} and I=R are the only ideals
2)The ideals of Z are exactly nZ:=1{an:aeZ3, nz0

First Isomorphism Theorem: If $:R—R'is a ring homomorphism then @ induces an isomorphism
?: B/rere == im @
atkere 2 P(a)

Examples:
DietR=C(e,m) and Fix Xoe®. Let I=1feC(R,): F(X):0%. Show ot T2 R and determine .

Define evg,: C(R,@)—>MR . This is a ring homorphism and Ker (evxo)=1 so Ta® and by the
£ f(%o)

First isomorphism +heorem, %1 2 im(evx,)=R Since YoeR, £(x)=0 €& CLR,®)
2) Let R=C(R,®) and N»0 then Sn2R
3) I=Cel®,®= U Sy, where Cel®,®) is the set of continuous functions with compact Support is

an ideal of R
4)\f R is commutative and aeR, then (a):=0R={ar: reR32R and is called e GHEACIPAINEEED

) Let R=R(x] and = (x*+1). wnaot is ¥z 7?
Look ot X+I eR/7, (x+TI*+2A+I=(x1)+I=0+T SO (Xx+I)*s-|
Define P:RIxJ— €  then Ker?=TI since if Fx)3(x*+0gMNET P FLi)=(L+1)gL)=0
R — (v

=) L ker® and Vg0 e R],3q0, r(x) e RIK] such that gx) =g (x4 N +r (%) where r(x)=0
or deg(r(x)) < deg(qux)). I1f gLi)=0, +hen r(id=9()-qLi) (it+1)=0-0=0.

If r(x)#0, then r(x)=ax+b and 0-L+b=0. 0,bER= : _-b

L= al => (e R which is a contradicton.

=7 Xer PEI.
Im®= € Since for a+bie €, F(x)=a+bxX gives PLEXN=atbl.
Thus by the first isomorphism +heorem, ®/z % C.
©) Let R=B[x] and d be a squarefree integer. Then Y (x2-pd = @A),

September 29,2016

Proposition: I 2 IS @ non-empty indexing Se+, Ris a ring,and 1-2R Yore2, then 0 1 _ap
el

Definition: For any Sbbset SR, the {dealiGERETBIEANIBYS s (.. 0 Tap.

IF 3= {Q.,QQ,---& then ()=(a,02,.-)

Example: If R is commutoative and s=1ab, then (8)=(a)={ra: reRY



Proposition: For R Commutative and SER,

w
~
~
Ms
N

n
L

L:llh‘b ”,Azo’ltc~,\.i,eoj

For R HDY)CDYYIYY)\H'QHVB <\ g 4 r v ! NeZ cle N | n-z

\.OJ'L“:‘ LoLt L LAl 4 'n.LCO, v, FS
Exomples:
D For any ring R, (0)=0 and (=R
2)Llet R=Z,if 0,04,.,0r€Z then (a.,..,0r)=(ged (a,..,0r))
Bezout's Identity: Let 0,be Z where 0 and b are not both 2ero. Then ged(a, b) is +he least
positive element of the form aut+bv, W,vEZ and all [other such elements are the multiples
of ged(a,b).
b Proof: Use the extended Euclidean Algorithm A

Example: (0,8)={u+3v: u,veZ5=(ged (6,8))7 (2)

Theorem: Every ideal in Z iS principle.

lement of .

o
(0]

L |Proofi: If TF0| then I=(0).|Let I#0 and|let n| be the|least positiv

claim: I=(n)

L Proof: NEL=3rmel Vnel = (n)sT.

Vael,3q,r e Z 3ucth that a=gn+r and/ 04r=n.
AL, NI gnel ™a-qn=r &L Qnd Since h is mimimal such +hot|N70 and 0sr<n =3 r=

Daen) T L ()

Definition 1 An integral domain in which every ideal is principal is called o @kiACipaliiidead

Oetinition: An ideal T2R is colled Eihikelyigenerared i+ 3a.,.., an ER Such that I=(qy,...,an)

Example: & Rz C[x,Xa,...], then I=(X,X%,,..) IS not finitely generated

Definition: A ring R is NBEHAEFIAN it every I4R is finitely aenerated.

Hilber+ Basis Theorem: IF R is Noetherian +hen [so is R(x]

Definition: Let T2aR, J4

P

R
I+rJ={a+b:ae 1, beTi=({ath:aeI, beTF)=(TUN2R

17=(1ab:geI, bedI})=§

M>

<
"
(@S
1
R

be aring. VL, J2R IJ

mn
H
jo]
l'_4|l

Proposition: Let

C

= 0b e InT A

% o
[

L |Proof! |f €T,
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