Math 206 (Linear Algebra) Notes

Krystin Manguba-Glover University of Notre Dame

Fall 2012

Section I.I: Vectors in Euclidean Spaces The set of all real numbers IR is regarded geometrically as the Euclidean line or the Euclidean 1-space. The set of all ordered pairs of real numbers (a,b) is the Euclidean plane/ Euclidean 2-space or R2. The set of all ordered triples of real numbers (a,b,c) is the Euclidean 3-space, R3. Generally speaking, the set 12" of all ordered n-tuples (x., x2,..., xn) of real numbers is the Euclidean n-space. R= the set of real numbers L Examples: 1,0,-2,5/4, √2, π, e The natural numbers: 0,1,2,... Integers: ...,-1,0,1, ... Rational numbers can be written as fraction of integers 4 Examples: 0, 1,-2,5/4 Algebraic numbers are roots of finite, non-zero polynomials in one variable with rational coefficients Example: $\sqrt{2}$ since it is the root of $x^2-2=0$ 4 Does not include imaginary numbers like 1-9 5/4 1/2 -1 Euclidean 1-space (line) C • (a b) b+ (a,b,c) Euclidean 2-space (plane) α Euclidean 3-space (space) vectors The motion in response to a force depends on the direction in which the force is applied and on the magnitude of the force. Definition: An arrow pointed in the direction in which the force is acting with the length of the arrow representing the magnitude of the force is called a force vector vectors and points are both elements of R" but just viewed differently. Mathematically there is no difference we use parenthesis for points and brackets for vectors Example: 7 [1,2] = V · (1,2) v=[v,,v2,...,vn], vi= the ith component Definition: Two vectors v=[v,,v2,...,vn] and w=[w,,w2,...,wn] are equal if n=m and vi=wi for each i

Definition: A vector containing only zeros as components is called a zero vector and is denoted Example in 127, 0=[0,0]. In 124, 0=[0,0,0,0] If we draw an arrow having the same length and parallel to v but starting at a different point P, we refer to the arrows as \vec{v} translated to P translated v vector algebra Physics tells us that if two force vectors/forces act on a body at the same time, then the two can be replaced by a single force, called the resultant force, which has the same effect. 1> The vector for the resultant force is the diagonal of the parallelogram having the two original vectors as edges. we consider the resultant vector to be the sum of the two original forces we can also think of connecting a translated vector to the end of the other. This is useful for addina multiple forces. translated translated translated The difference between vectors is represented geometrically by the arrow from the tip of the second to the first or by adding a reversed arrow in the opposite direction. 4-3 **√-**₩ Multiplying a vector by a scalar makes it that much longer or shorter 2v.

Vector algebra in Rn			
Let V = [v, v2,, vn] and w = [w, w	wal be vectors in	IRn. The vectors are o	added and subtracted as
follows:			300 41,4 500 10,5 5
4 vector addition: $\vec{V} + \vec{w} = [v_1 + w_1]$	Va+WaVa+Wn]		
4) If r is any scalar, the vector		as follows:	
Scalar multiplication: rv = [r		us rollows.	
Example: Let $\vec{v} = [-3,5,-1]$ and \vec{w}	=[4,10,-7] in IR3. com	pute 5√-3√	
5v-3w=5[-3,5,-1]-3[4,10,-7]=[-1			
Properties of vector algebra in	Rn		
Let u, v, and w be any vectors in		s be any scalars in 17	2.
Properties of Vector Addition			
A1: (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})	Associative Law		
A2: 1 √ + 1 √ = 1 √ + 1 √	Commutative Law		
A3: O+ V = V	Additive Identity		
A4: V+(-√)= Ö	Additive Inverse		
Properties Involving Scalar Multi			
S1: $r(\vec{v}+\vec{w})=r\vec{v}+r\vec{w}$	Distributive Law		
52: (r+s) v=rv+sv	Distributive Law		
S3: $\Gamma(S\vec{V}) = (rs)\vec{V}$ S4: $1\vec{V} = \vec{V}$	Associative Law		
1201100-00100	Preservation of Scal	e	
24, 7 / 2 /			
			٠
Definition: Two nonzero vector			√√w, if one is a
Definition: Two nonzero vector Scalar multiple of the other. Th	at is, for cer, v=cv	d or w=cv	
Definition: Two nonzero vector Scalar multiple of the other. Th b If V=rw with r>0, then Vand	at is, for cer, v=cv	d or w=cv	
Definition: Two nonzero vector Scalar multiple of the other. The stand directions	at is, for cer, v=cv	d or w=cv	
Definition: Two nonzero vector Scalar multiple of the other. The of the other of the directions	at is, for cer, v=cv	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The last of the other of the directions	at is, for cer, v=cv	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The standard directions 2 = w - v = u -v = u	at is, for cer, v=cv w have the same dir	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The of vector with r>0, then vand directions	at is, for cer, v=cv w have the same dir	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The strong with r>0, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for r	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel?	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The lift verw with r>0, then vand directions 2v=w -v=u Example: Are v= [2,1,3,-4] and w	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel?	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The lift verw with r>0, then vand directions 2v=w -v=u Example: Are v= [2,1,3,-4] and w set v=rw and try to solve for r 2=6r, 1=3r, 3=9r, -4=12r	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel?	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The strong with r>0, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for r	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel?	d or w=cv	
Definition: Two nonzero vector scalar multiple of the other. The lift verw with r>0, then vand directions 2v=w -v=u Example: Are v= [2,1,3,-4] and w set v=rw and try to solve for r 2=6r, 1=3r, 3=9r, -4=12r r=1/3 is common for all so th	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel? ey are parallel	or w=cv rection. If r<0, then t	they have opposite
Definition: Two nonzero vector scalar multiple of the other. The standard with roo, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for regression is common for all so the definition: Given vectors $\vec{v_1}, \vec{v_2},$	at is, for ceR, \vec{V} = \vec{V} = \vec{V} whave the same direction \vec{V} and \vec{V} = \vec{V}	rs r1, r2,, rk In R, th	they have opposite
Definition: Two nonzero vector scalar multiple of the other. The lift verw with r>0, then vand directions 2v=w -v=u Example: Are v= [2,1,3,-4] and w set v=rw and try to solve for r 2=6r, 1=3r, 3=9r, -4=12r r=1/3 is common for all so th	at is, for ceR, \vec{V} = \vec{V} = \vec{V} whave the same direction \vec{V} and \vec{V} = \vec{V}	rs r1, r2,, rk In R, th	they have opposite
Definition: Two nonzero vector scalar multiple of the other. The standard with roo, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rector, 1=3r, 3=9r, -4=12r r=1/3 is common for all so the direction: Given vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$ is a linear combination of vector	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel? ey are parallel ., vk in Rn and scala s v., v2,, vk with sc	rs r.,r2,,rk in R, the alar coefficients r.,r	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$
Definition: Two nonzero vector scalar multiple of the other. The strong with r>0, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for received in the solve for all so the direction: Given vectors \vec{v}_1 , \vec{v}_2 , is a linear combination of vector Every vector in R^2 can be expressional solution.	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel? ey are parallel ., vk in Rn and scala s v., v2,, vk with scala ssed uniquely as a l	rs r ₁ ,r ₂ ,,r _k in R, the alar coefficients r ₁ ,r	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$
Definition: Two nonzero vector scalar multiple of the other. The lift verw with r>0, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = \vec{w}$ and try to solve for region is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ Every vector in \vec{R}^2 can be expressed to $\vec{v}_1, \vec{v}_2,$ and $\vec{v}_2, \vec{v}_3, \vec{v}_4,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel? ey are parallel ., vk in Rn and scala s v., v2,, vk with sc ssed uniquely as a l r2[0,1] <=> r1=b1 and	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$
Definition: Two nonzero vector scalar multiple of the other. The if $\vec{v} = r\vec{w}$ with r>0, then \vec{v} and directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for region is common for all so the Definition: Given vectors \vec{v}_1 , \vec{v}_2 , is a linear combination of vector Every vector in \vec{R}^2 can be expressed in the property of the period of th	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel? ey are parallel v in R ⁿ and scala s v, v2,, v with sc ssed uniquely as a l r2[0,1] <=> r1=b1 and standard basis vecto	rs r ₁ ,r ₂ ,,r _k in R, the alar coefficients r ₁ ,r inear combination of r ₂ = b ₂	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ 12,, r_k 15 the vectors [1,07] and
Definition: Two non zero vector scalar multiple of the other. The standard with roo, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rector, 1=3r, 3=9r, -4=12r r=1/3 is common for all so the direction: Given vectors \vec{v}_1 , \vec{v}_2 , is a linear combination of vector Every vector in \vec{R}^2 can be expressed as a linear combination of vector \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 befinition: we call these the Ly For \vec{R}^3 , these vectors are:	at is, for cer, v=cv w have the same dir = [6,3,9,-12] parallel? ey are parallel v in Rn and scala s v, v2,, vx with so ssed uniquely as a l r2[0,1] <=> r1=b1 and standard basis vecto v=[1,0,0], j=[0,1,0]	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of r2 = b2 rs. , \vec{k} = [0,0,1] , the rtr	they have opposite The vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ The vectors [1,0] and The component
Definition: Two nonzero vector scalar multiple of the other. The stand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rections a linear combination of vectors $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_2, \vec{v}_3,$ befinition: We call these the $\vec{v}_3, \vec{v}_4,$ befinition: We call these the $\vec{v}_4, \vec{v}_4,$	at is, for cer, \vec{v} = \vec{v} whave the same direction of the sam	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of r2 = b2 rs. , \vec{k} = [0,0,1] , the rtr	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ The vectors [1,0] and n component
Definition: Two non zero vector scalar multiple of the other. The standard with roo, then vand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rector, 1=3r, 3=9r, -4=12r r=1/3 is common for all so the direction: Given vectors \vec{v}_1 , \vec{v}_2 , is a linear combination of vector Every vector in \vec{R}^2 can be expressed as a linear combination of vector \vec{v}_1 , \vec{v}_2 , and \vec{v}_3 befinition: we call these the Ly For \vec{R}^3 , these vectors are:	at is, for cer, \vec{v} = \vec{v} whave the same direction of the sam	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of r2 = b2 rs. , \vec{k} = [0,0,1] , the rtr	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ The vectors [1,0] and n component
Definition: Two nonzero vector scalar multiple of the other. The stand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rections a linear combination of vectors $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_2, \vec{v}_3,$ befinition: We call these the $\vec{v}_3, \vec{v}_4,$ befinition: We call these the $\vec{v}_4, \vec{v}_4,$	at is, for cer, \vec{v} = \vec{v} whave the same direction of the sam	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of r2 = b2 rs. , \vec{k} = [0,0,1] , the rtr	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ The vectors [1,0] and n component
Definition: Two nonzero vector scalar multiple of the other. The stand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rections a linear combination of vectors $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_2, \vec{v}_3,$ befinition: We call these the $\vec{v}_3, \vec{v}_4,$ befinition: We call these the $\vec{v}_4, \vec{v}_4,$	at is, for cer, \vec{v} = \vec{v} whave the same direction of the sam	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of r2 = b2 rs. , \vec{k} = [0,0,1] , the rtr	they have opposite ne vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ If the vectors [1,0] and
Definition: Two nonzero vector scalar multiple of the other. The stand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rections a linear combination of vectors $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_2, \vec{v}_3,$ befinition: We call these the $\vec{v}_3, \vec{v}_4,$ befinition: We call these the $\vec{v}_4, \vec{v}_4,$	at is, for cer, \vec{v} = \vec{v} whave the same direction of the sam	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of r2 = b2 rs. , \vec{k} = [0,0,1] , the rtr	they have opposite The vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ The vectors [1,0] and The component
Definition: Two nonzero vector scalar multiple of the other. The stand directions Example: Are $\vec{v} = [2,1,3,-4]$ and \vec{w} set $\vec{v} = r\vec{w}$ and try to solve for rections a linear combination of vectors $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ is a linear combination of vector $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_1, \vec{v}_2,$ befinition: We call these the $\vec{v}_2, \vec{v}_3,$ befinition: We call these the $\vec{v}_3, \vec{v}_4,$ befinition: We call these the $\vec{v}_4, \vec{v}_4,$	at is, for cer, \vec{v} = \vec{v} whave the same direction of the sam	rs r, r2,, rk in R, the alar coefficients r, r in ear combination of r2 = b2 rs. , \vec{k} = [0,0,1] , the rtr	they have opposite The vector $r_1\vec{v_1}+r_2\vec{v_2}++r_k\vec{v_k}$ The vectors [1,0] and The component

Span of vectors Definition: The span of a vector is the set of all linear combinations denoted sp(v,v2,...,vx) 4 The span of a single vector are all the scalar multiples of it. If $\vec{v} \neq \vec{0}$ then this is a line. If $\vec{v} = 0$ then the span is \vec{o} . 4 For 2 vectors \$\vec{1}\$ and \$\vec{1}\$: If マルが then sp(マ,が) is a line if v is not parallel to w, sp(v, w) is a plane If v=w the span is o Example: Let v=[1,3] and w=[-2,5] in R? Find scalars r and s such that rv+sw=[-1,19] rv+sw=r[1,3]+s[-2,5]=[r-2s,3r+5s] so r-2s=-1 = 3r-6s=-3 => 0+11s=22 => s=2 => r=3 3r+5s=19 3r+5s=19 we can also use column vectors and row vectors $\vec{V} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ $\vec{W} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$ $\Rightarrow r \begin{bmatrix} 1 \\ 3 \end{bmatrix} + S \begin{bmatrix} -2 \\ 5 \end{bmatrix} = \begin{bmatrix} -1 \\ 19 \end{bmatrix}$ $\Rightarrow r - 2s = -1$ as before The transpose of a row vector is the corresponding column vector. Similarly the transpose of a column vector is the corresponding row vector, denoted VT (√ T)T = √ Example: [-1,4,15,-7] 7 = [-1] -30 = [2,-30, 45] Example: 15 [1,2,3] a linear combination of [0,1,2] and [2,2,2]? $[1,2,3] = r_1[0,1,2] + r_2[2,2,2]?$ $= [2r_2, r_1 + 2r_2, 2r_1 + 2r_2]$ $2r_2=1$, $r_1+2r_2=2$, $2r_1+2r_2=3 \Rightarrow r_2=1/2$, $r_1=1$ so yes Section 1.2: The Norm and Dot Product The Magnitude of a vector Definition: The magnitude of \vec{v} = [v, v₂], denoted $||\vec{v}||$, is the length of the vector. b By the pythagorean theorem: |\v| = \v12+v22 Let $\vec{v} = [v_1, v_2, ..., v_n]$ be a vector in \mathbb{R}^n . The norm (or magnitude) of \vec{v} is $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$ Example: Represent [3,-4] geometrically and find its magnitude $||v|| = \sqrt{3^2 + (-4)^2} = \sqrt{25} = 5$ V = [3,-4]

Exa	mp	le:	Finc	l th	e a	mql	e	θk	eti	vee	n	£1,2	2,0	,2]	an	d l	[-3,	۱,۱,۱	5]															
-CO'	A:		<u>[1,</u>	2,0,	2].	[-3	1, 1	,5]					٩		<u> </u>	200	= (\ \n^\columber \	•															
		1	[1] 2+2 ²	² +0 ²	+22	16	-3) ²	+ 2+	12+	52'		(3)	(6)		2	, ,																		
Exa	mp	le:	[1,2,3	<u> </u>	-1,0,	47	= -1	+0+	12=	11																								
			ind						een	[1:	3, 1,	o] (and),12	[0,																		
	Co	s 0 =	√2 2√2	=	1	=> (9=	T																										
			412	-				9																									_	
						<u> </u>																												
			OF.	_		_	_	_				1 10	1 .									<u> </u>				_			1:-				_	
			and			vec	tor	S ii	n II	2.,	an	g ie	3 †	rb	e a	any								llou	חוט	9 1	oro	pei	rtie	S	ા	7:	+	
			w=1			. _	د د	!														La											_	
			(V+ ;;;;						٠,											_		aw								_			+	
			⊽ ∙ ๗๋ ว่ ≥ o							A		ъ .	- -7	<u>. </u>				mo sit	_	nei-	ту												+	
_	۰۲۰	V '	v - O	un	\ U '	v · V	-0	IF C	at IU	on	ıy	Τ \	y = (ر			70	TIO	IVI	ıй										_			+	
Dat		Lion	: Tw		P0+	\r-	۲	000	<u></u>		<u>ന</u>	n ^	ro	00	r 00	nd:	cul	٨٣	0.	N **	thr	VO 2-	201		04	JA/O	\AI	r;L	ال <u>م</u>	i	<u></u>	2)	_	
Vet			· iw	۷ ب	الات	018	V	unc	W د	ın	IK	u	10	pe	שין וי	1101	WI	u r	OI	Of	11/0	yor	ıul	, al	IU	VVC	, VV	117	۷۰۰		,	1 🗂		
	_		r 7:	ک	₩. 7	ر ا = د	14	7, 1	±7	72,1	ス	=)	A =	π/_																				
_	NU	16.	IT V	-0,	V · V	v – C	J. (1	V	-0,	VV 7	-0	_,	0-	12	4																			
Fxo	mp	le:	Dete	rmi	ne.	7 41) = f	4.1 -	-2.1	l av	nd	정=	<u>ر</u> ع	-4.) - L	n 0	me.	Del	rne	ndi	cul	ar												
<u> </u>			(4)(_	_										ρο.	Po	,,,,,		<u>٠٠.</u>												
	*	**		37 .				, , ,		170	17			1																				
Pro	4	0F	Schi	ואסט	ا ج	me	വാ	lits		€ <u>1</u>	-7	01	72	= 7	3 +	her	h	D+I	h s	nde	S 0	re.	0	15	√ ≠	Λ i	기 ±	<u>お</u> .	le	+				
																										Ο,		٠,						
7 =	V	- W	. 13 . 13 	w (_no	te	Z ·√	N = (> S	ınc	e (\ <u>V</u> -	₩ ¥	W	W)w	= \	J·W	-	₩.₩	1 V	v.W	= ()										
11>	,2		,2 . /	√ .v	ี่กั∖2	یل ا	112		.,2	G	์≀พี) ² ;	, (°	v ∙พ)2																			
II V	11 =	 	² +(-₩.៴	7)	11 00	11	- 11	2 	<u> </u>	wII	2		II WI	12																			
llvl	²	wll ²	·2 (ī	ì∙₩)	2	=>	11	v ∙ ₩	11 4	llvl	lln	11																						
The	. Tr	rian	gle	Ine	qua	ılit	y:	IJ√+	- ぱ l	اا <u>ک</u> ا	ᅦ	+ i	ښا																					
			IJ Ŏ +)+(w.	w) 4	(v	7.7)) + 2	וולוו	แพ	+	(ಮ .	w)									
			211V																															
B	2	6	rior	<u> </u>	2		A 0-	اح ا			_^		J	44					h	K O		上												
)	2	101	וו	.3	• 1	ıu	111	166	22	ч	M	J	Tr	e i	T,	Αl	ge	ט,	Tu														
As .	see	n II	n se	ctic	n	1.1,	W6	CC	ın I	wri	te	H	e	lin	ear	Sy	st	em				(2=												
						Ţ																2 =												
in 1	-he	υn	Kna	uns	X	, X ₂	as	sa	Col	υm	n v	rect	br	ec	va	tioi	ŋ:	¥		١٦	+ V	2 -	2	ا _	-1									
											_							^	١L	3]	. x	² L	5]		19_									
we	cai	n al	obre	via	te	thi	s c	S:	\prod		-2 ⁻	$ \rangle$	(,]	_[117															<u></u>				
									L;	3	5,	JL	X2]	L	19]																			
										Ą			X		В																			
Ax	S	equ	al to	a	lir	nea	r C	om	bir	nat	ior	0	f t	he	CO	lun	ทท	ve	cto	rs	90	Α:		-	2]	ſХı	ן ₌	χ,[١٦	+1	(₂ [-	2]		
																							L	3	5)	[X	[2	<u> </u>	_ 3_) ^	ſ Ľ L	5]		
	_																																_	
	_																																_	
						1.0			4														4	4										

The Notion of a Matrix

Definition: A matrix is an ordered rectangular array of numbers, usually enclosed in parenthesis or square brackets. An mxn matrix has m rows and n columns.

Examples:

Definition: An nxn matrix is called a square matrix

An 1×n matrix is a row vector with n components and an mx1 matrix is a column vector with m components. The rows of a matrix are its row vectors and the columns are its column vectors.

aij = the matrix entry in row i and column j

			an	Q,2	Q13	٠.	. ain	١
			921	022	0123	• •	. Q _{2n}	l
A=	[a	[]=	931	032	Q ₃₃	• .	aan	l
			:		:			
			Lamı	a _{m2}	ams	3 · ·	· 0 mm	1

Matrix Multiplication

The product of the matrix A and column vector x is the linear combination of the column vectors of A having the components of x as coefficients.

of A having the components of x as coefficients.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \\ a_{1n}x_1 + a_{12}x_2 + ... + a_{1n}x_n \end{bmatrix}$$
For $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $x = \begin{bmatrix} x_1 \\ x_1 \end{bmatrix}$

Examples:

$$\begin{bmatrix} 2 & -3 & 5 \\ -1 & 4 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 5 \\ 8 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 5 \begin{bmatrix} -3 \\ 4 \end{bmatrix} + 8 \begin{bmatrix} 5 \\ -7 \end{bmatrix} = \begin{bmatrix} 21 \\ -34 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \sqrt{2} \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 + 0 \cdot 1 + \sqrt{2} \cdot 4 \\ 2 \cdot 0 \cdot (-1) \cdot 1 + 3 \cdot 4 \end{bmatrix} = \begin{bmatrix} 4\sqrt{2} \\ 11 \end{bmatrix}$$

Notes:

- 1) components of Ax are dot products of rows of A with X: Ax= [(1st row) · x] (mth row) · x]
- 2) Ax = linear combination of columns of A with coefficients Xi:

 Ax = X, (1st column) +... + Xm (nth column)
- 3) Systems of linear equations can be written as Ax=B

Let A = [aik] be an $m \times n$ matrix and let B = [bkj] be an $n \times s$ matrix. The matrix product AB is the $m \times s$ matrix C = [Cij] where Cij is the dot product of the ith row vector of A and A column vector of $B : Cij = \sum_{k=1}^{n} aikbkj$

00.	tin	iti	0n	: 11	: A:	₹ĄŤ	th	en	the	e m	natr	'iх	A۱	s s	sy m	me	tri	C																
• , ,	le e e	ula :	٦			_11	7	Γ.			2	7	٢		2		.7																	
:XC	ımp)le:	L		2	-4	₩-	₩,		0 -5	3	=	\parallel	0	-2	2	•																	
			L \			,	1		1		3	<u>لر ا</u>	<u>_</u>				7																	
		-1-0				+	<u></u>	_		1.	1																							
<u>-</u> XL	ımı	ple		ا .2	- 3 4	+		3	7	6	18	s U	nd	efir	ned																_			
					7	J	L \	•	-	71,	J																							
	_		_																															
101	e:	Α-	· B :	A	+ (-1)	હ																											
		-1 -																													_			
-		ple	S:		,, ,		_			<u> </u>	1	[A				7																		
1)	2	3	7		۹ .5	-3	-		O -2	5	-	9 -1:		_	-7 13																			
	- 1	_ 0					<u> </u>	1	 _	<mark> </mark>	J	L 14	4 1	U —	15	7															_			
2)		2	4	5	H.	-	1	-	.3																						_			
	اسا	5		-	۲		4		\mathbb{H}																						_			
			_				_ 5	1	/ J															_			_				_			-
3)		<u> </u>	-6		-2		8																								_			
	-0	0	3		1		J	is	S	/mr	net	ric												_			_				_			
					0		4		<u> </u>																						_			
	L 8	Š	U		4	-																												
											1																				_			
	_			οf	Tr	ans	bo				tio																							
) ^T =				-		_	_		_	_	_	_	-	056																		
					'+ E	3 '					se																				_			
→	(A	B) _L	= 8	'Α	T			+	rar	nsp	ose	0	f a	pr	od	vct															_			
					Ma	tri.	K A	<u>lge</u>	bro	<u>\</u>				1		1 -																		
_	_	3 =									_		_	_	_	_		ad			<u> </u>													
_					A+ (\B+	(2)				_	_	_	_	_	_		ddi	1+10	n														
		0=			_	_											tioi														_			
					A +							_	_	_	_		lav						_	_					_		_			
					4+6							-	_	_	_	_	laı																	
_				-	(A	_												ılar	· mı	iHاد	plic	ati	on	_			_		_	_				
-		-			B)		LAE	3)			_	_		_	_	rov	_						_											
)C	_					_	_	_	_	_	_		nati	_	_		_	atı	on							_			
					ΒI													ทบโ	tip	licat	Hidr	١		_										
					+A							_	_	_	_		lau																	
→	(A -	+B)	C =	A()+ R	30					Ri	gn	t d	istı	ribl)tiv	2 10	W					\perp											
																																		_
	2	P	ti	bn	1	4	2	4	in	^	Sv	St	ew	S	of	L	ne	aı	r l	-0	20-1	<u> </u>	א פע			a								1
			• • •	- 4 1	'			J. V	11/	7	7	J.,					- , •			- 7	-4					1								1
																																		_
'ne	: n	nos	+ (ger												s r	n e	que	atio	ons	in	n	unk	cnc	wr	2	anc	d	วท	be	wr	itt	en	as
					a	11 X	+ (112	X ₂ 1	·	+a,	'nΧ	n =	b,																				
					۵2	.1 X 2	+0:	22 X 2	<u>.</u> †.	+()2n	Χn	=b	2																				
					:																													
					an	nı X	+0	m2)	(2+	4	·am	ηX	ŋ =	bm	า																			
	7470	5 V	ario	ldr	es	wh	ere	2 0	li,=	ŧ O	or	ai	2 7	٥, ١	a in	χ, +	Q i 2	. X2=	=bi	đe	ter	mi	nes	s a	lir	e a	anc	l H	ne	sol	utio	วท	to	
n 1					_																													

Row	E	<u>ch</u>	el	Oı	<u>n</u>	Fo	rn	n																													
Defin																																					
I) All	rc	ω	S	CO	nto	air) i	ng	01	1ly	2	en	DS	ap	pe	ar	be	lou	v r	ows	s h)i+k	าท	ON	ze	ro (ent	rie	S								
2) The	t,	irs	14	nc	ηz	:er	0	en	tr	y ir	1 9	ny	rc	νW	a	op	ear	s i	n (a c	olu	mr	n to	5 +	he	rig	ht	OF	th	e 1	firs	st r	on	2 e	ro		
er	tr	y i	n	aı	7y	pr	e	cec	lin	gr	ъu	ა.																									
4 Tr	e	fi	rs	+ 1	101	120	er	o e	nt	ry	in	a	rou	N	of	a	10	w	ech	elo	n	for	m	ma	Hri	хi	8 -	Hhe	pi	VO.	+ f	<i>i</i> or	th	at	ro	w	
										ľ																											
Exan	ηρΙ	es																																			
[I	3	3	2	2]	15	-no	4				2		4		c	is	no	1		O	(2						1		3	2	5				
0	C	>	(5		ow					١		3		2	r	bw			0	(5	3		is i				0	()	J	3	3	is i	ກ ນ	
[0	(5			Cc	he	101	n			0		0	(5	eci	nel			0	(>	0	1	ot	ela	m		0	(þ	0	1	. 6		elo	n
k	(ci	rc	le	s c	re	; p	iv	ots	3											0	(>	0	11					0	(5	0	(5]			
f [A	ы	i	S	in	rc	w	e	ch	eld	n	fc	rr	n -	Hhe	en	Αх	=b	is	ea	sik	v 8	SOLV	ed	Ь	v k	oac	ĸ	SUŁ	ost	itυ	tic	on.					
							Ī									•-					/																
-xam	pl	e:	F	inc	1 0	χIJ	S	οlu	tio	ns	t																										
		-	-	<u> </u>	5	-1		3	3	—	_		(,- <u>y</u> .	7 + [3X3 ⁻	=3																		+			
ſ١	1 c	: 1:	=		0	3		5	8									Xa	4	/2=	-2	=>	3x -) + S	5(-2	2)=	8 =	7 X 6	= 6	=	- 5	5 X . ·	-6-	+3(-2)	=3	
				١,		0			-4						-4			713		_															=		
															•																		+	+			
xam	D)4		٢	_	ı	l		3	7	,	Y - +	- Y 2	= 5	ζ		Y 2	= 7	2															+				
	PI	_	H		0	_		<u> </u>	-	=) '	2)	^3 (2:	= 1		=>	Xo	= 3	- 5/2		X , 1	\$ 1	ree															
			_		+		-		J			-	- •			***		12															+				
xam			٢		-3		6	1	3]			+																					+				
:XUIT)	יקו	C .	+	0	3	_	2	_	7	C	i h	+	110	_ 1	محا	ko		00/			V 4	Δ.V.	. /	\v -	_1	Ma	0 100	0.4	- IO		S A L		-	+			
			+	0	C		7			3	II) C	e ·	The	3 W	1 51	ro	w	rrje	an	5 0	W 1 T	OX	2+(JX3	3 - 1,	77)	ere	. ar	e n	0 ,	201	OTIC	3nS	•			
		+	L	O	+	_	1	<u> </u>	۱ ၂			+																				+	+-	+	+		
)o[:.o	:1:	- 1-		Λ. 1	11:00	00.		~	ماده		ما		20	Ю.		~ l	اداما			inc	200	لدند		۱. ۱		11.				-01-		205	016				
efin																		n5	12	1110	OH:	2121	en	T. 1	T	1117	iea	r 3	ysı	er	7) 7	145	Or	je (זכ		
nore	5	DIC	Л	IOI	15,	ודד	e	Sy	STO	2m)	18	- (Ons	s 1S	Ter	17																			_		
340	_/_											+																					+	+	+		
xam	pie			٢		-3				_	+	+	L									Г		1	T 2	r-5	C 1	1.7				+	+	+	+		
				-		-3 C	_	0		5 2		0	-7		Χı	-3x:	2+5	X 4 =	4			+	χı	+	3	-2	0 +	7		- OE	ne	ral		+			
-[}	++	1	=	E	_	C	_			0	'	1	 '			Χ2.	+2)	<u> </u>	-7	=>	X	+	X2 X3		-	2s -	7	+		0	SO	slut	ior	-			
		+		 	_			C		0		_		\exists			χ ₅ =					\vdash		_		40-	1							1			
		+		Γ()	С	7			U		٥	1	ر ر			Ť						Х ₄ Х 5	_			د	+	+	or	SC	ala	rs	r, :	5		
, v	A :-	ابر د	10	_			_1		_			+										L	1 5	J	_		•	J				+	+	+	+-		
→ X ₂	ur	M	X	y (ire	Ca	ווג	ecl	+	ree	VC	iric	اطت	es																				+			
•1-					<u> </u>							+			1																	_	-	_	-		
heor																									US	inc	el	em	ent	ur	y r	ow	op	zer	711	ons	•
→ Tr	e	al	90	orı	TN	m	π	o d	0	τŊÌ	3 [5	na	บร	sıa	n (enn	nin	ati	on,	/re	auc	1110	n										+			
												+																						+			
												+																					_	_			
												_																						_			
												_																									
												4																						_			
												_																				1					

100.	2210	(F)	EII	(Y))\	na	FIO	<u> </u>																										
tep:	<u>s</u>																																
1F	the	fii	rst	col	υm	n c	40	A C	ont	ain	s c	only	y Z	ero	s,	Crc	22	i+	0 F1	n	nen	tal	lly	an	cl (20M	tin	υe	υr	Itil	tr	ne	left
								_	_	nati														_	_								
							•					•												-									elou
			noi	ን	ero	er	7tr	γ,١	r, i	n t	ne	fi	rst	CO	lum	n,	ac	bk	- r/	p.	Him	ser	+	ne	top	r	ou) †	o i	+ 1	ю (cre	ate
	ero																																
										oeat													. 16			6.7							
دم	N	2 + e	10	טכ	cai	n n	וטמ	npı	y t	he	Ьı	VO1	- 8	rol	שע	Υ	/p	то	(YY)	ak	e (3010	טוכ	111C	ons	21	mp	ner	•				
x am	nle																																
2	-4	2		2				Γı	-2	1		-1]					ī	_	2	1	_	1											
2	-4			4	R _I -	+ 1/2 F	2,	2	-4		} -				-212 3-41		0	(D	١	-	2											
2 4	-8	3	3	2				4	-8	3	3 -	2				\rightarrow	0	(b	0	(0											
0	0	-		2				Lo	C	-	l	2					0		0	٥		6											
(am	ple:																																
dve	. :	X2-3	3 X3	=-6	5				0	l	-3	3	-5	P.	←) [)	2		3	-1		7	P) P =	-2R		2	3	-1		7		
		<u> χ</u> ,+							2	3			7				C		1	-3		9		178		>	0	1	-3		-5	1	
	4:	X, +9	5X2	-2	X 3 =	10			4	5	-7	2	10				L		5	-2	1	οJ				L	0	-1	C	<u>ا ا</u>	.4]		
																										_				+	1	R3-	7R3+1
																					->	۲.			1-		2	3	-1	_	4	-	
																					χ:	= [-]	,4,3	3]	<=		0]	-3	-9		-	
																										<u> L</u>	0	0	-3	-	1 <u>J</u>		
1 0	1 -		_1					1 1		-		۲۰.	7	חו			l la 0				C =)_ r		יי		-	-		27				
										r ī																					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
٦	13	3	P(\ -	/	r Fi	7	und	1	111Y	if -	7]	, y i	V T	λ2 V 2	/ T(זג ר.	201	ne T	30	ulu O	13	7	ar) C Y	= 2	2 .	טנזיו ב-2	-2	S1113	7 K	= 2	¥ - :	2 1	
	1	3	X	=	· -	, -	,	2				\rightarrow	0			5	\rightarrow	10		1	-3		(4)	hic	h	15	in	SE) T			5 1 1	
+	,	2	LX	•	- 6			1	2			-	0	-1		3				0			W	1110	11		1.1	9	V	, vv			
	Ť				L	7		-		•	, <u>J</u>		•		•							1]											
hen	rer	n:	let	A	be.	an	m	nx n	m	otri	Υ.	A x=	•h	is	COX	ารเร	te	nt	iF	One	א מ	nlv	16	th	e v	ect	pr	h	in I	Rn	is	in	the
par	0	+	he	CO	lun	าก	vec	tor	s c	F	A					POIN				91.70		,											
											-																						
efir	niti	on:	Α	m	Hri	Χĺ	n 1	rou	s e	che	lor	7 f	Orr	ทเ	vitk	າ	ill y	oiv	ots	eq	val	to	1	an	d L	vit	ካ ፣	<u>L</u> er	os	ab	Dve	e a	n
										ນ e																							
> W	e u	se	th	e (່າຊເ	<i>-</i> 22	-Jo	rd a	าก	me	Hh٥	f b	0 1	red	υce	. a	m	atı	iΧ	in	ю	red	UC	ed	rol	υ €	ch	elo	n t	for	m		
Ly	Tr	neor	en): TI	ne	red	UCE	ed	rou	e e	hel	on	fo	rm	of	a	m	atr	ίX	Α	is	บท	iqu	e									
		_		_	_					Sy.					_		_			_	_	_	_			_				_	_		
																			•													n a	
							_				rtit	ior	a	nd	a n	on'	zer	o e	ntı	У	to ·	the	ric	ght	of	th	e p	art	itic	n.	Th	a+	is,
									‡ 0																								
																																	ion
										me																		fin	tel	y 1	ma	ny	
10.	J. 4-i	hn	¢ 1	hi41	h n	ic r	MAY	dsz	Cro 1	b vid	ric	ble	PS.	ns	the	Pre.	Ar	0 5	ivo	+-t	rp 0	C	Ыu	mr	Is i	h F	4						1
20		017.	3, 6	OIII	, 0	13 1	7,41	ı yy	116	U VC	2110				• • • • •		u	<i>ر</i> ک	100		166		0.0	-		-							+

Definitio	on: Ar	nxn	ma	trix	ł A	is	inv	ert	ibl	e	1F 1	hei	re e	exis	ts	an	n×	n	ma	tri	x (S	uch	H	nat	CA	= A	C = :	L	_
where :	I is t	he n	×'n	ider	ntit	y r	nat	rix	(. T	ne	m	atri	x C	is	th	e i	nv	ers	se o	of.	A,	der	101	ed	A	١				
P 1t V	is no	t inv	ertil	ble	the	en	it i	s s	inc	jul	ar																			
Theorer	n: Eve	ery ele	emei	ntai	ry	ma	tri	ΧÍ	s ir	rve	rtil	ole																		
		1																												
Theorem	n: Let	A ar	nd B	be	in	ver	tik	ole	n×	n ı	ma	ric	es	.Th	en	AB	is.	11	ver	tik	ole	an	d (AB)-1=	B-1	A-1			
Lemma	: Let	A be	an	nxr	n	nat	ri X	. Т	ne	line	ear	Sy	ste	m.	Ax :	= b	ha	is i	a s	οΙυ	tio	n f	or	eve	ery	cr	70i	ce	of	
column																									L.					
							'																ľ							
Theorer	n: Let	- A a	nd (b	e r	nxn	m	atı	rice	es.	The	n	CA=	I	if c	anc	l o	ทเ	y i	F A	C=	I								
																			•											
Computa	ation	of A	-1																											
To find				s, pi	roce	eed	as	fc	ollo	ws																				
) Form																														
2) Apply				_		_	-		tte	mp	+ 17	o re	ed u	ce	LA	I] to	o [I c	门.	1F 4	he	re	dυ	tic	n	car	n b	e	
	ed out									_																				
heorem	n: The	follo	win	a Co	onc	liti	ons	7 2	or	an	nx	n	ma	trix	Α	are	2 6	2au	ive	ale	nt									
i) A is				9							Ė							,												
i) A is				- to	th	e i	der)+i+	y r	ma-	tri	(I																		
ii) The				_		_			-	_				npc	one	n+	CC	טוכ	mn	VE	cto	or I	9							
v) A ca														•																\top
) The																														
xample	: Solv	e. 2 x	+90	=-!	5 (and	Co	mr)() †	e. +	he.	inv	Pris	e. 0	+ 4	ne	C.O	eff	ici	PNI	m	10+	rix							\top
7.9177			+4y:																											
2 9	1 0		<u> </u>	4	٥	17		ı	4		0	ı			0	-	.4	9			<u>0</u> −1	۲-	4	9						
1 4	0		_ 2	9	1	0]	~	Lo	1		l	-2	~	- 0	ı		1	-2		=)_ (A =		1 .	-2						
	-4	971-	57	[8	3					•														-						
X=A b		-2	7 =	-1	9																									
		7 4																												+
xample	Exor	229	2 0	17 /	as i	a D	rod	uct	()	FP	lem	ent	-0rv	y n	nat	-ric	2.9													+
	-45		1 4	11		P						.01)	41	'	.41															+
se app	14	ne sta	205	abo	VP	+	1-h	P	ide	nti	t ₁	m/)+r	ix																+
ر ۔ آ ہ	T . h	, 5 5, 6	1	0	٦			ı	-4	1	'					D	1	71	1	07	٦١		47							+
 		L2=	-2	1		£3	-	0	1	=	> A	= <u>E</u> ,	E2	E3	=	1	0	\parallel	2		1		i							+
	1			<u> </u>	<u></u>		<u>L</u>		•						L	•		٦ -					ال ۱							+
o expr	ess 0	n inv	ertir	ole.	m	tri	х С	18 4	וח ח	rod	C)C+	٠£	مام	me	n+⁄	1 rv	m	10+1	cice	25	1,12	i+e	in	10	5 †	to	rın'	n+	the	+
ockpro																											_			+
	01 17	ال مار	1001	, u	1	10	4 : 1 1	-63	, () i i (۲۵۲	∪ 1]C	,11)(, ,	111	, I	Ju		٠,٠	. u	,0,	,3	,4	, '		ے دو	, 7	10	_	+
											_		1								_	_			_	-				$\overline{}$
Sec	tior	1.0	6	101	m	09	er) e	00	2(S	γŞ	ste	217	IS	<u>,</u> S	SU	0	Sf	Da	ce	S	C	n	d	F	39	Se	2	
- 1/4						_									+							_								۴
efinitio	n· A	linea	CVI	ton	n A	lv-	h i	ς ν	100	200	pn	PAL	ار ی	F h.	= ^		+													+
																	۲۷	ω.I	h	200	100	, u	د ا		0	رما	, \ L i	~~		+
→ A hor																											717	ו זט		+
-7 IF	ne ze	TO VE	CTOP	19	cal	וכט	τη)	اح	1111	141	20	וטונ	Orl	. 11	ı U	1718	1 8	301	ודט	บท	2 C	ire	TIU	E 11 C	1710	41				+

```
Theorem: Let Ax=0 be a homogeneous linear system. If h, and h2 are solutions of Ax=0, then so
is the linear combination rhitsh2 for any scalars rand s
  Proof: Let h, and hz be solutions of Ax=0, so Ah, =0 and Ahz=0
  A(rh,+sh2)=A(rh,)+A(sh2)=r(Ah,)+S(Ah2)=r0+s0=0 as needed.
In fact every linear combination of solutions of a homogeneous system Axto is again a solution
of the system
Definition: A subset w of Rn is closed under vector addition if for all u, vew the sum u is in w
Definition: If rivew for all vew and scalars r, then w is closed under scalar multiplication.
Definition: A nonempty subset were that is closed under both vector addition and scalar
multiplication is a subspace of 12n
4 The solution set of every homogeneous system with n unknowns is a subspace of IRn
Example: Show that w = {[x,2x] | x e R3 is a subspace of R2
Of course w is nonempty of R2. Let ti, vie w so ti=[0,20] and vi=[6,26] then
ロージ=[a,2a]+[b,2b]=[a+b,2(a+b] which is in W. Also cu=c[a,2a]=[ca,2(ca)] is also in W so W is a
subspace of IRn
Theorem: Let w=sp(\vec{w_1},\vec{w_2},...,\vec{w_k}) be the span of K>0 vectors in Rn. Then w is a subspace of Rn
  Proof: Let #=1, #1+1, which is
  in walso cut (cri) with...+ (cri) with since K>0 w is nonempty as needed.
Definition: we say the vectors wi, w2, ..., wk span or generate the subspace sp (wi, w2, ..., wk)
of IRn
Example: Express the solution set of
                                    ٥
x_1 - 2x_2 + x_3 - x_4 = 0
                      2 -3 4 -3
2x_1 - 3x_2 + 4x_3 - 3x_4 = 0
                                                              0
                      3 -5 5
                                -4
                                          0
                                                                            6
3x_1 - 5x_2 + 5x_3 - 4x_4 = 0
                                    ٥
                                                        0
                                                                         0
                      -1
                             -3
-X_1 + X_2 - 3X_3 + 2X_4 = 0
         [-5r+3s]
                             3
    Xi
    X<sub>2</sub>
          -2r+S
                                 so the solution set is
                 = r
                                                          SP
    X3
                      ١
    Xч
Definition: Given an mxn matrix, there are three natural subspaces of IRM or IRM
1) The span of the row vectors of A is the row space of A and a subspace of Rn
2) The span of column vectors of A is the column space of A and is a subspace of Rm
3) The solution set of Ax=0 is the null space of A and is a subspace of IR" (also called the Kernel)
                            the rowspace is sp([1,0,3],[0,1,-1]) in 123
Example: For
the column space
                                       ) in \mathbb{R}^2. The null space is SP
Theorem: A linear space Ax=b has a solution if and only if b is in the column space of A
```

												Α:																									
												as																is,	xει	Ν,	χ=,	(,W	1,+	+)	1kh	JK	
L	14	£ ;	W,	, W	2,	,	, W	ዾ፞፞፞፟፟፟፟፟፟፟፟	is	a	ba	sis	for	w	, tr	nen	W	e r	av	e 1	N= 5	sp(₩,	, Wa	.,	, W	た)										
Ļ	€e	:,,€	22,.	,	e۲	2	is	tt	ne .	sta	nd	ard	b	asis	fo	or 1	Rn																				
Re	cal	١: ١	Eve	2rv	v v	ve	cto	or	in	Rr	C	an	be	w	itt	en	as	a	บท	iau	e	con	nbi	na	tio	n	σF	٤e،	,	en	3.						
										+ V r																											
	-	ļ <u>-</u>	Ť	Ť		Ī																															
Th	POY	PN	n:	TV	10	SE	4	\$ 10	1. 1	N _o		Wk.	ų is		ha	sic	50	- \	N C	n n	4:	Or	.	000	\	41											
•										and		VVE	3 10	, u	Ou	313	10		V —	11	- 11	uı	IU	017	7												
		_	_			_					_	n r																									
	2)	17	1	441	<u> </u>		1 K	.WI	K - (י ט	17)	(I) T	1-1	2	=	rk-																					
_												<u>.</u>				<u> </u>																			-		
												nat						_														_					
												has			•							h	bE	Rn													
2)	Th	e 1	ma	Hr	İχ	A	ÍS	r	ρW	eq	viv	<i>i</i> ale	n+	to	the	id	en	tity	m	atr	İX																
3)	Th	e r	na	tri	X.	A	is	in	ver	tib	le																										
4)	Th	e o	cdi	υn	nn	ve	ect	or	S	of A	A I	Fori	n	b	asis	s fo	or 1	Rn																			
Ex	am	ple	2: 1) e	her	m	in	ρ.	wh	eth	er	the	P. V	ect:	ors	V ₁ =	£1.1	.37	Vo	= [:	3.0.	47	an	d V	2=	1.4	11	fo	rm	a	ba:	sis	for	ı	23		
		1										riX																									
	Γ i		ર	1	1	ľ	Ť	3	1	7	Ī		3	1	1	27	10	. 00		90	IV G	.017															
Λ-		+	0	4	~	١,	+	-3	3			0	1	-1	\ ~	7	7	hu	- 5	V. 1	/o \/	-3 i	'c ^	bo	eic	٠ ٢,	- II	3									
η-	2		4	-1		1		-6	_					-0			1	110	5 L	VIJI	2, 1	5J 1	s u		010	10	וו זכ										
	L	<u> </u>	7	-	7	4	4			۲,	L		O	٦.																			_	-	-		
	0.		+				+			1 -					_																	_	_	_	<u> </u>		
								۱۲	SA:	ste	m	ha	nn	g H	1e :	san	ne	ทบ	mk	er	n	οF	e	qua	HO	n S	as	ur	Kn	DU	n s	is	Ca	llec) 0	1	
SC	va	re	S	y\$	94	m	١.																														
De	fin	iti	on	۱: ا	Α :	sqı	υq	re	m	atr	ΊX	tiw	h :	zer	o e	ntr	ies	be	101	υť	ne	ma	in	di	ago	ona	al i	s c	alle	d u	PP	er	tric	ng	ula	r	
Ex	am	ple	: 5			3		1																													
				C)	1		-1	۱	SU	PP	er :	Hric	ng	υla	r																					
				c)	0		9																													
Th	POI	OY	ν.	1	٠+	Δ	h	D	On	m	yn	m	n+r	v	Th	a B			na	0 5	0 6		v O	en.													
																						401	vu	CH													
												τ <u>ς</u> .					_					,	مام	121		001	Less	D-	la:	!	اما				<u> </u>	a P	
UL,				uU	اعاد	U .	ro	w·	rec	nel	on	fo	m	Ot.	AC	on:	212	<u> </u>	or t	ne	r)XI	n 10	<u>jer</u>	1+1+	y r	nu	FLIX	TO	104	ved	מ	n	n-n	re	W	Ot	
		rc		_		ſ	-				1	1.			-																						
	۲۶	E	XQI	M	Ple	•	1		0	(φ	m) = 4	, r	= 3	, r	M-1	U =]	L																		
			_			$\downarrow \downarrow$	C)		'																							<u> </u>	<u> </u>	<u> </u>		
							C)	0																												
							. 0		0		φ <u>]</u>																										
iii	Tr	e	Col	ur	nn	V	ec	tor	S	of A	A 1	forn	n a	bo	sis	fo	or ·	the	Co	lun	าท	spo	ce	of	A												
Ex	am	Dle	: 1) _P }	e.r	m	ın.	P.	luk	10+	hei	r th	P. 1	lect	TY'S	۱۸	1.=	[].2	2.	-[]	W	= [-	-2	3	5.	ה	anc	14/	2 =	-1.	-3	4.7	j f	orr	n (
		1										W ₁ , V						2 1 1 ت	رد ۱-	٠ ل	***		-1	-,				- 70	3	r '1	-,	11 2	1	5.7	, ,		
Ju	910	1		ті -2	1E		יטיג	۲	ا	-2	-	,	12,1	v 3 /	11) -つ	1 K	7																				
	+	2			-:		+	+	D	Ī	-	+			Ī	-1	\vdash	22	le -														_				
A	-	3					~		0	1	-		+		0	0		SU	no														_		-		
		1 3		_										4	. •																						
		-1	_	1		H		+	0			+	+-		0	0	\vdash																				

De	fin	itic	n:	A	line	ar	Sy	ste	m l	hav	inc	aı	n i	nfi	nit	e	ทบเ	mbe	2r	of	SC	tule	ior	าร	is	call	ed	U	nde	rde	eter	mj	nec	d.	
							·																												
															ist	en t	aı	nd	na	s f	ew	er	eq	vat	ior	20	tha	n	บทเ	cnc	wn	S,	the	n	
it		_	_	_		_	_	_	er (
		_	_				_																										ntit	Ͱу	
	m	atr	X	SD	it	Ca	nn	0+	be	. tr	ne	บท	qυ	9	cas	e.	Sir	œ	W	೬ ೦	ıssı	מנ	e	the	S'	yst	em	is	CC	ns	ist	ent	-,		
	th	ere	r	nus	+ 1	ьe	ar	in in	fin	i te	, n	υm	be	r	40	sol	uti	on:	s Z	Z															
		ar																																	
ھا	A	h	m	og e	ne	OUS	, li	nec	ar	sys	tei	ຠ	Ax:	-0	ha	vin	9	feu	er	e	סטך	itic	ns	+1	nar	ט נ	nkr	10 U	งทร	s r	as	a			
	nc	n t	riv	ial	80	luti	on	, 4	hat	is	a	SO	lut	ion	H	at	12	no	+]	5															
رحا	Α	squ	ar	e h	om	oge	ne	OU	s S	yst	em	A	x= (o r	ngs	q	no	ntr	ivi	al s	solu	otic	n	14	an	d c	nly	ij	- /	A is	no	ot r	row)	
	eq	υİν	ale	n+	to	> Hr	e	ide	nti	ty	m	atr	ix	40	+1	e)e	sa	me	. S'	ze															
Th	eor	em	: L	E †	Ax	(=b	be	a	lii	nea	r	sys:	ter	n.	H 1	o is	s a	ny	pa	rti	CUI	ar	SD	υti	on	04	Α)	(=)	5 (inc	h	is	a		
																																	ven	y	
																																٠٥.			
											-															•									
Ex	am	ple	s o	P SI	bs	pac	es.																												
		•				_			25 -	thro	טטמ	h c	riC	in	, R	2																			
									gh		$\overline{}$		_	_			th	rou	na h	44	1P. (orio	nin	. 11	23										
									9			9			911				3.	•••			J · · ·												
																																	\dashv		
																																	_		
																																	_		
																																	+		
																																	\rightarrow		
																																	\rightarrow		
																																	_		

		n sp ((v,w)) = lir	ne														_
اً با الحا الحال الحال v are no	ot pai	rallel	, the	n spo	์ ี่ ซึ่)= plc	ane											F	
System of	Linear	Equ	nation	<u>ns</u>															
Example: 1	s [1,2,3]	l a lir	near	COYY	nbinat	ion	of Co	2,1,2	anc	1 [2	,2,2] ?							
[1,2,3] =	λ,[0,1,2	门 + 入2	[2,2	,2] <	(=> [2.	λ2, λ							3						L
$2\lambda_2 = 1 = \lambda_1 + 2\lambda_2$	> 入2= ½ = 2 <i>=</i> > 入·	2 = 1	=> 2	λ,+2	2λ2 = 3	3 ✓													
Thus [1,2,3] = [0,1,2] + 🕹	[2,2	.27														
	103		- 2	- 1														ſž	•
efinition:	Arowy	ector	- is (ンセ ナト	ne for	·m [Y Y-	Y	<u>بر</u> 2) (U	lum	n V	ectr	v is	: ~	the	force	n X	-
	A 1000 V	CCTO	12 ()\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16 101	,,, ,	. 11, 12,	, , ,	W.J. 7	1 0			ompo			1116	JOFF	/ 1 L X	אַ
The standa	rd basi	s of	IR" is	s €,	, ē λ	whe	re ē		0,0,.	,0	, ו, כ),,	٥]						
xample: 1	ι ^s has 0	basi	to 21	e,=\	L1,0,0 <u>.</u>	, e ₂ =	LO,1,	0],(23=[(၁,၀,	۱								H
very vector	יאר פטים י	he u	ritto	0 I)	امريوار	, ne	a lin	160r	CUN	nhi	na+i	On a	ot e) .	۰.,				
\vec{V} = [$V_1,$	100 = V.	2) +	. + V _M	67	nguei	y 010	J. 117	cut	CUT	ווטוי	iu!		, (. 1 / ,	∪N				t
																			Г
lorm and	Dot Pr	roduc	<u>:+</u>																Г
Pythagoras		a (c= \a ¹	² +b ²															
	Ь																		
ve R2, v= 1	۷,,ν2																		
Ve IR2, V= I Norm of 3 X	v = 11 v 11 =	: lena	th o	t √:	= \(\(\nu_1^2\)	+V221 =	- [2	٠,,	\2	in 1	\mathbb{R}^3								
X.	3 1		,				-} ا√	، (۷ ز)										
	X V	,											,	2 . 0	۱ ۲		1 2	١	L
Vı	. 2	\ <u>\</u>		0 _	√V,2 + V	21				V ₃) v :	= \ V ₃	²+ L²	. = 1	V,2+ V	1 + V32	'	H
		V2		χ-	101 - 1	2		_	l										H
X, Z			√ X2	1	n IRN	ll vI	ı = Jv.	2+ V2		V N 21	l								H
			JAZ					12											Γ
Properties																			
→ ♥ ≥0,	1411=0	:=> 🏹	= 0 ((pos	itivit	y)													Ĺ
→ r·▽ =		٠, ,, ,	•	1.		1:, \													L
→ 11 寸+ 〒11 ≤	11 11 11 11 11	111 (+1	riang	jie ir	nequa	11 + y)													-
Definition:	A unit	vecto	or is	O VE	ector	√ Su	och t	hat	11411	= 1									-
					, ,														
Definition	: A sphe	ere i	sas	set d	of all	unit	vec	tor	s										_
												22/22							H
			ما	ID2.	Circle	. I		In	ID 3 .			spne	re 1						
In IR':	-1		ln	IR ² :	Circle			In	\mathbb{R}^3 :			sphe	re						

Dot Product	(inner	-/scalar	product)							
let √, w ∈ R ^N	v •₩ =	V,W,+V2W	1 ₂ + + V	NMn:	- 2 V i N	/i					
					6-1						
Example: [1,2	2,3] · [-1,	0,4]=-1-	+0+12=1	1 e IR							
Note: V·V=Vi	2++V _N	² = ²									
Cheometric	Interpr	retation									
₹ ∀ -₩	11 7112 1		- 11 ² + 2	n , n , n	크 I) cos I	2					
W	V,2++V	N ² +W ₁ ² +	$+ \ln^2 = ($	را-۱۸۰) _ء	+ + (V	~-MN)	² +2 √	เพีย ดร	9		
	V ₁ ² ++\	/ _N ² +W ₁ ² +.	$+ W N^2 - 3$)(v,w	+ V2W2-	t+ V N	Wn)+2	cos 9 II v	ना। क्रा		
	0=-2(3	ช๋∙พี)+2cc	เมเโรม 0อ	ગ્રા							
	cos0=	<u> </u>	(if V ,ī	พี are	unit v	ectors	, cos0	= V·W)			
Example: Fin					o] and	(O, \sqrt{2})	[0				
√3+1 = 2	cos 0 =	212 =	$\frac{1}{2}$ Θ =	3							
₹ and ₩ a	are orth	nogonal	if √vw	= O							
Properties o	f dot p	product									
ゞヹ゠゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙	1										
÷ v•(ū+₩):											
→ r·(マ・砬)=(→ v̂・v̄≥o, v̄	r♥)·₩=	= (r₩)·V									
5 V·V 2 O, V		=> V = O									
Schwartz Ir	nequalit	y: ।र्ज-ळ	411VII · 11	₩ 11							
Proof: If \vec{v} =	d or w	= 0 ther	boths	sides	equal	0					
Schwartz Ir Proof: 1f √= 1f √≠0, ѿ≠ c	5 then	let 2 = 7	₹ - ▼ • ₩	• w	(note:	Z•W=	(0)				
(v-v-w-v	v) • W =	1.M-\$	W.W	= 0							
 	(<u>v.</u> w) ² \vec{w} ²	117112+	<u>v·w)</u>	<u>> (ग्रं-</u>	\vec{w}) ²					
	1 1 1 1 1 1	1 1			117	1)2					
๚ฃ๚๛ ๚²≥ ((v·w)	10-W]		N II							-
Provina the	Trianale	Inequalit	y: v+v	रो। ≤ ॥ [:]	ग्रे॥+॥ ज्रे॥						
Proof:게V+팺II	²= (√+₩))(マ+ホン)= マ	.v+2v·w-	∙พ๋∙พ่	≤ v̄·v̄+2	/\d\ \d\	1+ W·W +	≤(IIVII+1	(제II) ² =:	> √+₩ ≥ ∀ + ₩	11
Matrix Algeb	m										
		1				- 1 -	• • •	11	A1 .	1 001	
Definition: An	N×M M	natri X 15	un arro	iy of	real nur	npers	WITH	N YOWS	and M	1 columns	
Example: A=	10,	12] 2×3	motriv		aij=er	otry ir	row i	,columr	ij		
	L2 -1	3] ~3					. a23= 3		-		

Multiplication	n																				
Let A be ar	N×M	matrix	and	XEIR	N	χ=	[X 1]	++	nen	Αx	eR^	J									
[A. y. +	Λ. ν.+	+ A V	7				Xm.														
Ax= :		+ AIM XI																			
AniX,+		. +Aum Xr	٨																		
Example:	1 0	√2 .	0 =	1.0+	O·1+	· 12·	4 _	4	12												
	2 -1	3] L	4]	[2.0+	-) · (·	+3.4	4]	L	,, T												
Note:																					
L) compor	nents	of Ax c	are d	ot p	rod	uct.	s o	fn	aus	40 3	Α	wi-	th :	X							
Ax = [(
L> Ax = line																					_
Ax=X,(1st coli	Jmn)+	+ X	m (M	th	coli	om	n)	=0	2	++	-1	+4	V2 3							
4 Systems	of lin	ear ea	vation	ns ca	an r	DE 1	u)ri-	Hρι	1 A	s A	χ = T	3			~						+
$\begin{cases} X_1 + \sqrt{2} \\ 2X_1 - X_2 \end{cases}$	(3 = O		0	12][Xi	_ [c	٠ <u>٦</u>		, 0												
12x1-X2	+3X ₃ =1		2 -1	3][X ₃	_															
Let A be al								LI	mat	rıx,	C=A	IR.	is a	n N	۱×۲	m	atri:	X			
The jth col							100														
Cij=(ith r	om of	A)·(j#	1 colu	mn	Of .	B) =	: ک ا	aix	bkj												
Example:	101	27 0	3	[12	3+	2 J 2	٦		Ţ,	0	<u>52</u>	1	0	3							
	2 -1	3] -1	2 5	<u> </u>	1	2	+		<u>L</u> 2	-1	3_	Н	- I	0	is	not	- de-	Fine	d		
		<u> </u>	٦			•	٧						- '	کا							
Warning:	NOT C	ommuta	ative																		
Example:	0 1]	10	_	2)	٥٦	O	1	. [c	ا د									
	_0 0]	[0 2]	L	0	J	L	-0	2]	0	0]	Lc) (ارد								
IL is associ	ماننده	. (40)	- ^ (() c \																	
It is associ	utive	· (AB)C	- AC	50)																	
Definition	: An N	×N ma	trix	is a	sau	vare	e m	atr	ri x												
	, ,,,,	,,,,,,,,																			
A square n	natrix	has m	ain c	diago	ma	ı a	ıı,a:	22,.	, a	NN											
													_ ,,	~~	1.		_ 1				
Definition:	A diag	onal n	natrix	(IS (u so	qua	re	m	מדרו:	×ω	ner	e	all () -	dıc	1901	nal	en	tric	25	_
are zero																					+
Example: [10	7		ldent	i+v	Ma	atri	χ	[]		\7				١	0	0	7			
Example:	0 2	0			1					۱ .			I	3 =		١	٥	_			
	0 0	0]							r c		IJ			<u> </u>	0	0	1	7			
										Ιμ											

Addition and Multiplication by Scalar $A+B=C, C_{i,j}=a_{i,j}+b_{i,j}$ $R:A=C, C_{i,j}=Ra_{i,j}$ Transpose Let A be an N×M matrix \Rightarrow AT is an M×N matrix (switch rows and columns) If $C=A^T$, $C_{i,j}=a_{j,i}$ Example: $\begin{bmatrix} 1 & 0 & \sqrt{2} \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ \sqrt{2} & 3 \end{bmatrix}$ Definition: A symmetric matrix A is an N×N matrix where $A^T=A$ i.e. $a_{i,j}=a_{j,i}$ Example: $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties $\begin{pmatrix} A^T \\ A^T \\ A^T \\ A \end{pmatrix} = A $ $\begin{pmatrix} A+B \\ A^T \\ A \end{pmatrix} = B^TA^T$ System of Linear Equations. $\begin{pmatrix} x_i \\ x_n \end{pmatrix} = b$ $A_{i,i,k} + a_{i,k} x_{i,k} + a_{i,k} x_{i,k} + a_{i,k} x_{i,k} = b_{i,k}$ $A_{i,k} + a_{i,k} x_{i,k} + a_{i,k} x_{i,k} + a_{i,k} x_{i,k} = b_{i,k}$ The solution for the system is the intersection of all these N lines.
A+B=C, $C_{i,j}=a_{i,j}+b_{i,j}$ $R:A=C$, $C_{i,j}=Ra_{i,j}$ Transpose Let A be an N×M matrix => A ^T is an M×N matrix (switch rows and columns) If $C=A^T$, $C_{i,j}=a_{j,i}$ Example: $\begin{bmatrix} 1 & 0 & \sqrt{2} \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ \sqrt{2} & 3 \end{bmatrix}$ Definition: A symmetric matrix A is an N×N matrix where $A^T=A$ i.e. $a_{i,j}=a_{j,i}$ Example: $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties $(A^T)^T=A$ $(A+B)^T=A^T+B^T$ $(AB)^T=B^TA^T$ System of Linear Equations A $\begin{pmatrix} x_i \\ x_n \end{pmatrix} = b$ $a_{Ni}x_i+a_{N2}x_2++a_{NN}x_n=b_N$ If $a_{i,j}=0$ or $a_{i,j}=0$, $a_{i,j}=1$, $a_{i,j}$
R·A= C, Cij= Raij Transpose Let A be an N×M matrix \Rightarrow AT is an M×N matrix (switch rows and columns) If C=AT, Cij=aji. Example: $\begin{bmatrix} 1 & 0 & \sqrt{2} \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ \sqrt{2} & 3 \end{bmatrix}$ Definition: A symmetric matrix A is an N×N matrix where AT= A i.e. $a_{ij}=a_{ji}$. Example: $\begin{bmatrix} 1 & +1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties (AT)T=A (A+B)T=AT+BT (AB)T=BTAT System of Linear Equations A($\frac{x_{ij}}{x_{ij}}$ =b a_{ij} X=1.+ a_{ij} X=2.++ a_{ij} X=1.+ a_{ij} X=1.+ a_{ij} X=2.++ a_{ij} X=1.+
Let A'be an N×M matrix \Rightarrow AT is an M×N matrix (switch rows and columns) If $C \neq AT$, $Cij = Qiji$ Example: $\begin{bmatrix} 1 & O & \sqrt{2} \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ O & -1 \\ \sqrt{2} & 3 \end{bmatrix}$ Definition: A symmetric matrix A is an N×N matrix where $A^T = A$ i.e. $Qij = Qij$ Example: $\begin{bmatrix} 1 & -1 & O \\ -1 & 3 & \sqrt{2} \\ O & \sqrt{2} & O \end{bmatrix}$ Properties $(AT)^T = A \\ (A+B)^T = A^T + B^T \\ (AB)^T = B^TA^T$ System of Linear Equations $A\begin{pmatrix} x_i \\ x_n \end{pmatrix} = b \\ Qin X_1 + Qin X_2 + + Qin X_n = b_n \\ X_n \end{pmatrix}$ If $Qin X_1 + Qin X_2 + + Qin X_n = b_n$ If $Qin X_1 + Qin X_2 + + Qin X_n = b_n$ The solution for the system is the intersection of all these N lines
If $C=A^T$, $C_{i,j}=a_{j,i}$. Example: $\begin{bmatrix} 1 & 0 & \sqrt{2} \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \\ \sqrt{2} & 3 \end{bmatrix}$ Definition: A symmetric matrix A is an N×N matrix where $A^T=A$ i.e. $a_{i,j}=a_{j,i}$. Example: $\begin{bmatrix} 1 & +1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties $(A^T)^T=A$ $(A+B)^T=A^T+B^T$ $(A+B)^T=A^T+B^T$ $(A+B)^T=B^TA^T$ System of Linear Equations A $\begin{pmatrix} x_i \\ x_j \end{pmatrix} = b$ $a_{N_1}x_1+a_{N_2}x_2++a_{N_1}x_2=b_1$ $a_{N_1}x_1+a_{N_2}x_2++a_{N_1}x_2=b_1$ determines a line. The solution for the system is the intersection of all these N lines.
Example: $\begin{bmatrix} 1 & O & \sqrt{2} \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ O & -1 \\ \sqrt{2} & 3 \end{bmatrix}$ Definition: A symmetric matrix A is an N×N matrix where $A^T = A$ i.e. $a_{ij} = a_{ji}$. Example: $\begin{bmatrix} 1 & -1 & O \\ -1 & 3 & \sqrt{2} \\ O & \sqrt{2} & O \end{bmatrix}$ Properties $(A^T)^T = A$ $(A^T)^T = A$ $(A^T)^T = A^T + B^T$ $(AB)^T = B^TA^T$ System of Linear Equations $A\begin{pmatrix} x \\ 1 \end{pmatrix} = b$ $a_{N1}x_1 + a_{N2}x_2 + + a_{NN}x_n = b_1$ $A\begin{pmatrix} x \\ 1 \end{pmatrix} = b$ $a_{N1}x_1 + a_{N2}x_2 + + a_{NN}x_n = b_1$ If $a_{i,j} = 0$ or $a_{i,j} = 0$, $a_{i,j} = $
Definition: A symmetric matrix A is an N×N matrix where $A^T = A$ i.e. $a_{i,j} = a_{j,i}$ Example: $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties $(A^T)^T = A$ $(A+B)^T = A^T + B^T$ $(AB)^T = B^TA^T$ System of Linear Equations $A\begin{pmatrix} x_i \\ x_n \end{pmatrix} = b$ $A_{i,i} x_i + a_{i,2} x_2 + + a_{i,n} x_n = b_i$ If $a_{i,1} x_i + a_{i,2} x_2 + + a_{i,n} x_n = b_i$ The solution for the system is the intersection of all these N lines
Definition: A symmetric matrix A is an N×N matrix where $A^T = A$ i.e. $a_{i,j} = a_{j,i}$. Example: $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties $(A^T)^T = A$ $(A+B)^T = A^T + B^T$ $(AB)^T = B^TA^T$ System of Linear Equations $A(X^T) = B = B$
Definition: A symmetric matrix A is an N×N matrix where $A^T = A$ i.e. $a_{i,j} = a_{j,i}$. Example: $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties $(A^T)^T = A$ $(A+B)^T = A^T + B^T$ $(AB)^T = B^TA^T$ System of Linear Equations $A\begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} = b$ $A_{ni}x_i + a_{12}x_2 + + a_{nn}x_n = b_n$ If $a_{i,1}x_i + a_{12}x_2 + + a_{nn}x_n = b_n$ If $a_{i,1}x_i + a_{12}x_i + + a_{nn}x_n = b_n$ If $a_{i,1}x_i + a_{12}x_i + + a_{nn}x_n = b_n$ The solution for the system is the intersection of all these N lines
Example: $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 3 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{bmatrix}$ Properties (AT)T = A (A+B)T = AT+BT (AB)T = BTAT System of Linear Equations A $\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = b$ \vdots \vdots \vdots \vdots \vdots \vdots \vdots
Properties $(A^{T})^{T} = A$ $(A+B)^{T} = A^{T} + B^{T}$ $(AB)^{T} = B^{T}A^{T}$ System of Linear Equations $A\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = b$ \vdots $A_{N1}X_{1} + A_{N2}X_{2} + + A_{NN}X_{n} = b_{N}$ If $A(x_{1} + A_{N2}$
Properties $(A^{T})^{T} = A$ $(A+B)^{T} = A^{T} + B^{T}$ $(AB)^{T} = B^{T}A^{T}$ System of Linear Equations $A\begin{pmatrix} x \\ \vdots \\ xn \end{pmatrix} = b$ $A_{n_{1}}x_{1} + a_{12}x_{2} + + a_{n_{1}}x_{n} = b_{1}$ $A_{n_{1}}x_{1} + a_{n_{2}}x_{2} + + a_{n_{1}}x_{n} = b_{2}$ If $a_{n_{1}}x_{1} + a_{n_{2}}x_{2} + + a_{n_{1}}x_{n} = b_{2}$ The solution for the system is the intersection of all these N lines
Properties $(A^{T})^{T} = A$ $(A+B)^{T} = A^{T} + B^{T}$ $(AB)^{T} = B^{T}A^{T}$ System of Linear Equations $A\begin{pmatrix} x, \\ x, \\ x, \\ x, \end{pmatrix} = b$ \vdots $A_{n_{1}}x_{1} + a_{12}x_{2} + + a_{1n_{1}}x_{n} = b_{1}$ $A_{n_{1}}x_{1} + a_{n2}x_{2} + + a_{nn_{1}}x_{n} = b_{n}$ If $a_{n_{1}}x_{1} + a_{n2}x_{2} + + a_{nn_{1}}x_{n} = b_{n}$ The solution for the system is the intersection of all these N lines
$(A^{T})^{T} = A$ $(A+B)^{T} = A^{T} + B^{T}$ $(AB)^{T} = B^{T}A^{T}$ System of Linear Equations $A\begin{pmatrix} x \\ \vdots \\ xn \end{pmatrix} = b \qquad \vdots$ $A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{n} = b_{1}$ $A_{n_{1}}x_{1} + A_{n_{2}}x_{1} + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{1}}x_{1} + A_{n_{2}}x_{2} + + A_{n_{2}}x_{2} + + A_{n_{2}}x_{2} + + A_{n_{2}}x_{2} + + A_$
$(A^{T})^{T} = A$ $(A+B)^{T} = A^{T} + B^{T}$ $(AB)^{T} = B^{T}A^{T}$ System of Linear Equations $A\begin{pmatrix} x \\ \vdots \\ x^{n} \end{pmatrix} = b$ \vdots $A_{n_{1}} X_{1} + A_{12} X_{2} + + A_{1n_{1}} X_{n} = b_{1}$ \vdots $A_{n_{1}} X_{1} + A_{n_{2}} X_{2} + + A_{nn_{1}} X_{n} = b_{n}$ If $A_{i,1} \neq 0$ or $A_{i,2} \neq 0$, $A_{i,1} \neq A_{i,2} \neq 0$ determines a line The solution for the system is the intersection of all these N lines
System of Linear Equations $A(x, y) = b$
System of Linear Equations $A(x, y) = b \qquad \vdots \\ A(x, y) = b \qquad \vdots \\ A$
$A\left(\frac{x}{x_{n}}\right) = b$ $A_{N_{1}} x_{1} + a_{N_{2}} x_{2} + + a_{N_{1}} x_{N} = b_{N}$ $A_{N_{1}} x_{1} + a_{N_{2}} x_{1} + a_{N_{1}} x_{N} = b_{N}$ $A_{N_{1}} x_{1} + a_{N_{2}} x_{2} + a_{N_{2}} x_{1} + a_{N_{2}} x_{1} + a_{N_{2}} x_{1} + a_{N_{2}} x_{2} + a_{N_{2}} x_{1} + a_{N_{2}} x_{2} + a_{N_{2}} x_{$
A(:)=b: $a_{N_1}x_1+a_{N_2}x_2++a_{N_N}x_n=b_N$ If $a_{i,1}\neq 0$ or $a_{i,2}\neq 0$, $a_{i,1}x_1+a_{i,2}x_2=b_i$ determines a line The solution for the system is the intersection of all these N lines
$x_1 = x_2 = x_1 + a_{N1} x_1 + a_{N2} x_2 + + a_{N1} x_1 = b_N$ If $a_{i,1} \neq 0$ or $a_{i,2} \neq 0$, $a_{i,1} \neq a_{i,2} x_2 = b_i$ determines a line The solution for the system is the intersection of all these N lines
If $a_{i,1} \neq 0$ or $a_{i,2} \neq 0$, $a_{i,1} \neq 0$, $a_{i,2} \times a_{i,2} = b_i$ determines a line The solution for the system is the intersection of all these N lines
The solution for the system is the intersection of all these N lines
Example: N line solution single solution no solution
Example: N line solution single solution no solution possible possible
2 3 * /// X
Algorithm
Ax=b
Augmented matrix (Alb)
Example: $2x_1 + x_3 = 1$ (2 0 1) $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}$ (2 0 1 1)
Example: $2x_1 + x_3 = 1$ $\begin{pmatrix} 2 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 0 & 1 & 1 \\ 1 & 2 & -1 & 0 \end{pmatrix}$

Elementary row operations
RI: Interchange two rows
R2: multiply one row by C = 0
R3: add a multiple of a row to a different row
Example: (2 0 1 1)
RI (1 2 -1 0) R2 (6 0 3 3) R3 (-2) × (2nd row) + (first row) (0 -4 3 1) (1 2 -1 0)
Note:
Ly each of these are invertible
these do not change the solution set
Theorem: If (A/b) ~ (H/c) (equivalent or can get from one to the other using
elementary row operations) then Ax=b and Hx=C have the same solution set
Example: $\begin{pmatrix} 0 & 2 & -4 \\ 3 & 6 & 12 \\ 2 & 0 & 4 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -9 \\ 0 \end{pmatrix}$
2 0 4/X ₃ / 0/
(0 2 -4 0) (3 6 12 -9) (1 2 4 -3) (1 2 4 -3)
$\begin{bmatrix} 3 & 6 & 12 & -9 \end{bmatrix} R_1 \leftrightarrow R_2 \begin{pmatrix} 0 & 2 & -4 & 0 \end{pmatrix} \frac{1}{3} R_1 \begin{pmatrix} 0 & 2 & -4 & 0 \end{pmatrix} \frac{1}{2} R_2 \begin{pmatrix} 0 & 1 & -2 & 0 \end{pmatrix}$
$ \begin{pmatrix} 0 & 2 & -4 & 0 \\ 3 & 6 & 12 & -9 \\ 2 & 0 & 4 & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 3 & 6 & 12 & -9 \\ 0 & 2 & -4 & 0 \\ 2 & 0 & 4 & 0 \end{pmatrix} \xrightarrow{1/3} \xrightarrow{R_1} \begin{pmatrix} 1 & 2 & 4 & & -3 \\ 0 & 2 & -4 & & 0 \\ 2 & 0 & 4 & & 0 \end{pmatrix} \xrightarrow{1/3} \xrightarrow{R_2} \begin{pmatrix} 1 & 2 & 4 & & -3 \\ 0 & 2 & -4 & & 0 \\ 2 & 0 & 4 & & 0 \end{pmatrix} $
/ 1 2 4 - 3 / 1 2 4 - 3 \
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
0 -4 -4 6 D D -12 6
equivalent to: $x_1+2x_2+4x_3=-3$ $x_1=1$
72 473 0 1 1 72 1
$-12x_3 = 6$ $x_3 = -1/2$
Row Echelon Form
Definition: Matrix Is in row echelon form if in each row, the first non-zero entry
appears to the right of the previous row's first non-zero entry. The non-zero entry is
called the pivot.
Example: [0 5 0 0]
Example: [0 5 0 0]
note: If [A] his in my echelon form then Ax=h is easily solved by back

note: If [A|b] is in row echelon form, then Ax=b is easily solved by back substitution

Example:
$$\begin{bmatrix} 0 & 1 & 1 & 3 \\ 0 & 0 & 2 & 1 \end{bmatrix} \rightarrow \begin{array}{c} X_2 + X_3 = 3 \\ 2X_3 = 1 \end{array} \rightarrow \begin{array}{c} X_3 = \frac{1}{2} = \\ X_2 = \frac{5}{2} \end{array}$$
, X_1 is free

Theorem: You can always reduce a matrix to row echelon form using elementary row operation.

