

```
Proposition 1.4 (AGM Inequality): If x and y are real numbers then 2xy \le x^2 + y^2 and xy \le \left(\frac{x+y}{2}\right)^2.
If x and y are also nonnegative, then \sqrt{xy} \le x + y. Equality holds for both when x = y.
   Proof: Begin with 0 \le (x-y)^2 = x^2 + 2xy + y^2. Adding 2xy yields 4xy \le x^2 + 2xy + y^2 = (x+y)^2. Dividing by 4 gives xy \le (x+y)^2. If x \ge 0 and y \ge 0, then xy \ge 0 and we take the positive
   square roots to get xy \leq (x+y)^2 and \sqrt{xy} \leq x+y by Proposition 1.1. \square
Corollary 1.5: If x,y>0 then 2xy < xxy = xxy Equality holds in each when x=y.
   Proof: Proposition 1.4 yields xy we get the other inequality by multiplying by
                          \sqrt{xy} \frac{2\sqrt{xy}}{x+y} \le \frac{x+y}{2} \frac{2\sqrt{xy}}{x+y} \Rightarrow \frac{2xy}{x+y} \le \sqrt{xy}
   2 xy
    X+y .
Definition: The narmonic mean of x and y is 2xy
   → This is from the study of average rates. If we travel distance dat rate r in time t we
   nave d=rt. If we travel distance d at rate r, and time t, and return with rate r2 and
   time t2, then r, t,=r2t2=d. To get the average rate r of the trip, we solve 2d=r(t,+t2)
       r = \frac{2d}{b_1 + b_2} = \frac{2d}{\frac{d}{r_1 + \frac{d}{r_2}}} = \frac{2r_1r_2}{r_1 + r_2} = \frac{\text{harmonic}}{\text{mean}}
Example: If the rate one way on a plane is 380mph and the return rate is 420mph then the
average rate is: 2(380)(420) _ 800(19)(21) = 399 mph
                      380+420
Sets
Definition: The notion of a set is so fundamental that we don't give a precise definition. Think
of a set as a collection of distinct objects with a precise description allowing us to determine
whether a given object is in it.
Definition: The objects in a set are its elements or members. When x is an element of A we
write xeA and say "x belongs to A". When not in A we write x & A.
Definition: If every element of A belongs to B then A is a subset of B and B contains A. We write
A ≤ B or B ≥ A.
To list elements explicitly, use brackets. I.e. A= {-1,13 is a set of elements -1 and 1. Order of
elements doesn't change the set. x,y \( \in S \) means both x and y are in S.
Definitions/Notation:
→ N=natural numbers = {1,2,3,...}
L \Rightarrow \mathbb{Z} = \text{integers} = \{..., -2, -1, 0, 1, 2, ... \}
4 Q=rational numbers 1.e. numbers that can be written % with a, b∈ I, b ≠ 0
4 R=real numbers
   4 Note: NSZ $Q⊆R
```

Definition: Sets A and B are equal, i.e. A=B, if they have the same elements. <u>Definition</u>: The empty set, written \emptyset , is the unique set with no elements Definition: A proper subset of a set A is a subset of A that is not A itself. <u>Definition</u>: The power set of a set A is the set of all subsets of A Note: The empty set is a subset of every set. Example: Let 5 be the set { Kansas, Kentucky3 and let T be the set of states in the U.S. that begin with "k" s=T and s has 4 subsets: Ø Ekansas3, Ekentucky3, Ekansas, kentucky3. These 4 elements are the elements of the power set. In order to specify a set consisting of elements in a set a satisfying a given condition, we write Exe A: condition (x) 3 and read "the set of x in A such that x satisfies 'condition'" To prove that a set T is the set of solutions to a problem, we must prove that every solution belongs to T and that every member of T is a solution. Example: Let S={xeIR: x²<x3 and T={xeIR: 0<x<13 and prove S=T. Let xeT then x>0. Multiply x<1 by x to get $x^2 < x$ so $x \in S$. Let $x \in S$. Since $x^2 < x$ we get $0 > x^2 - x = x(x - 1)$ which means x and x - 1 are nonzero with opposite signs so xet as needed. The Penny Problem we are given a collection of pennies grouped into piles. We create a new pile by taking one penny from each existing pile. We consider different orderings of the same list of sizes to be equivalent. i.e. 1,3,5=3,1,5. We let 5 be the set of lists that do not change. Example: Let a be a list with n piles and b be the resulting new list. If a e s, then a = b and b has n piles. since we introduce one new pile to b, one pile of a must disappear, meaning a has exactly one pile of size 1. Since a=b, b has exactly one pile of size 1 too. This means a must have exactly one pile of size two. Letting i be the size of a pile we continue this reasoning for i from 1 to n-1. If a has one pile of size ithen b does too. So a has a pile of size it, giving us one pile of each size from 1 to n. Let T be the set of lists consisting of one pile of each size from I through a natural number n. we have already shown that SST so now we need to show that all elements of T remain unchanged (I.e. TSS). Consider an element of T with piles of size 1,2,...,n. For each i from 2 to n, the pile of size i becomes i-1. The pile of size I disappears and the n piles contribute one coin to make a pile of size n. Thus the resulting piles are the same as the original and TSS. So S=T.

Defin	∩it	iov	ns/	[/] N	ota	iti	on	:																																	
L> W	he	n	a,	be	. 72	a	nd	C	اعر	0,	++	ne	n ·	٤a,	,	b	3 0	ler	od	les	\$ 8	ie	Z :	a s	٤٤	63															
L> W																																									
L) {	2 K	: K	5 Z	3 i	t s	he	2 8	eł	- C	4,	ev	er	n	ur	nt	e	rs																								
L> {:	2K-	+ :	KE	. 1	z is	t z	he	9	set	0	f	bd	dı	ทบ	m	be	ers																								
																			ei	th	er	ev	en	٥r	ode	o)															
													′			J																									
Defin	nit	ior	\: \	Th	e	D	ari	+\		of	a	n	int	-61	ne.	r	sta	He	2	La.	he	the	2r	i+	S 6	-ve	n c	or	od	d											
لما	, ^{(,} F	·vρ	n"	Ωn	٦, س	00	۱۷,	, į	s c	ากเ	V	ţ٧	r (dic	CI	1.0.5	sin	n	in	ter	10 I	ີ 3.	ı£	110	SO	v 0	n	υm	he	r i	5	ρn	اء ا	Hiv	e. I	اندي	Ηh	Di).	+		
																						n				,			,			Γ,							•		
- 0	PC	C11 '	,,,,	9	. , ,,		syc	31 (<i>.</i> 111	,			100	11 /	Ч	r	U.S.	, ,		- 1	CUI	1 1	,,,,													+	+				
Defin	<u>۲:</u> ۲	iov		\alk	101		٨١	26	: m		ni:	Lla	Λ	یا ہے		Hh	0 (C 2	4	in	10r	101	50	1 15	l ic	+1	10	لمء	. ?	/ C 11		Λ 4	v	127	,	+				
VETII	7.111	101) .	VV 1	101	J	u, t	ى ر	> K	. 0	נוט	i ()	u	= [,			JU	SC	u	171		vai	, L	1, 0.	1 10	117	16	احاد	()	(611	(J =	, <u>,</u> , =		,	+				
OoC:		:		u e			1	. 15			11-		-1		1				•	. 1	200	1-1				11.			2						7.	+	+				
Defir	<u> 11+</u>	<u>1017</u>	: W	vne	en	a,	Ю	5 II	2 1	WI-	ŧη	a	≥b	, 1	n	e	op	en	[]	N+	eri	/al	Ca	, b)	18	+n	e	se	۲	XΕ	K :	a <	. X <	<u>ط</u> -	3	+	+	_			
0 0:	١.			•					_	-	_				+				١.																_	+	+				
Defir														er	ne	n-	ŀΧ	: '	æl	or	gii	ng	to	S is	sa	H le	as	+ (28	lar	ge	0	IS	ev	ery	/ e	:le	m	en-	- O	ť.
S, th															+				+																_	_	_				
		ini																	_																_	_	_	_			
Ly	, Th	ne (Spe	en	in	te	rva	1	(a	(d ₁	n	as	n	0	m	ax	n	or	n	nir	1														1	_	4				
										1	_																								_	_	_				
Defir	<u>iti</u>	on	. ^	A (Ji	st	h	Hiv	า	en	Hr	ies	i i	n.	Α	cc	ท	sis	ts	٥f	: e	ler	nei	nts	of	A	in	a	spe	cif	iec	0	rd	er	u	iHic	n r	eţ)et	-i+i	on	
allou	vec	1.																										ľ									ľ				
Defir	oit	ior): /	A (k	<u> </u>	מנ	le	is	a	lis	;}	W	itk	n k	· e	n-	-ri	es																							
																				۱ 6	nt	rie	s ir	Α																	
•							10			ن ر			1 5		۲	710	٠, د			, ,	, .	1															+				
Defir	نان	ion	. /	1n	AV	de) K ()	٨	00		ic		s IV	۲,		.:1	.h	۱,		۵	ملہ	-i o 0													+	+	+				
DETIL	/111	On	- [71.1	UI		ی ار	_	Pu		10	ט נ	Į 11·	21	u	ווכ	71	100			1111	100	١.													+	+				
Dol: "	نا: ۵	010	. +	1- 0		اءاد	-00	io		016	~ ~			7		21.0	. (5	1 -	. ,		10.		. T	ic	. 11		501	C	(,					4 -	2				
Defir	1 <u> T </u>	<u>on</u>	•	ne	C	417	rcs	14	Y]	pro	שכ	,UC	T (OT.	80	-1 7	5 3	s a	ric	1)	, 0	UY H	TEI	1 5	XI	, 10	π	1e	SET	. 5	LX,	יע	•)	165	, y	EI	J				
1 42			\pm			v	۲,			<u> </u>	+			. 7	,				+																+	+	+	_			
L _{>} Α ² .									,	, X ₁	k)	: χ	iЕ	A.	5				_																-	+	+	_			
ן א Xi										+	\perp																						,		_	_	\perp				
₽ Si	nc	e (a,	b)	is	U	sec	į	ťoi	1 ()Y(эb	re	d 1	pc	irs	;, (2 £1	-e	n	i†	is (vri	He	n '	"th	e i	nt	erv	al	Ca,	b)	ft	r	op	en	ir	7te	žrvo	zlç	
										_	4				_																					_	_				
Defir																															nat	ed	b	У	ho	riz	:01	1+0	al		
and	ve	erti	ca	1	200	rd	line	at	es	C	all	ed	H	ne	('Ar	te	SiO	n	C	الالا	rdir	nat	es	90	th	e 1	DOI	nt.												
The	α	วทู	e) +	ρł	-	car	+6	esi	ar	,	or	od	υc	+5	i	S	na	m	ec	1 0)++k	er	Re	né	D	esc	ar	tes	3 (159	16	- 1	65	6)						
			ı	-			ľ				T	1				Ì			į.									T						_							
Defi	ni-	tin	n:	1	4	Α	(I)	<u>ገ</u> ቦ	ł F	ζŀ	DP.	?	et.		Γh	ei	rí	n	in	n	L	yri4	+0	n	ΔU	R	CD	n.s	+21	S	ት ነ	<u> </u>	ام	en	nei	7	; i	n	Δι	r 1	3
- 611		- 10	, ,		- 1	/ \	41	,,	- N				-11	•		ر.	. (1 1	.0		,~		. 0		, ,	<u> </u>			,01			- I		-11	,-1	113	-		٠, ٠	-1 1	
Defi	دنم	-in	0.	1 4	> ‡	Δ	0 m	٦	ρ	h	2	CD	to	T	10	ir	iv	صار	VC	PC	Lic	n	1,14	111	en	Δ	n r	2	COL	26:	حهر		ر د	ام	1	۱۵۱	~	on.	+0	ir	
						П	ur)	U	Ď	D(5	o۲	.13,	. 17	た	11	ग	110	10	CU	110	17,	Wľ	LIT	۱۱ب	H	11 8	٠,	ال	191	3 17	> (75	ul	10	101	110	211	10	11)
both	1 /	1 (r)(ע	<u>ت</u> .					+	+				+				+																+	+	+	\dashv			
D. C.						_	+		1		+				_				1.0							-		١			a 1			_ 1	\vdash	_	+	_		_	
Defi				L	et	A	a	n	d	R	6	е	se	tS.	Т	h	Zir	(III	+6	ere	enc	e,	Α-	B,	CC	ns	ıst	2	O†	ele	m	ıer	745	s O	げし	A_	th)	at	q	re
not	in	B								1	4																		_		_	_			<u> </u>	+	4				
		\perp								1	_				_																				<u> </u>	_	_				
Defi	ni	tic	n	<u>:</u> T	w	0	se	l-s	a	re	d	lis	Di	nt	i	f	th	ei	r	in	te	rse	cti	on	is	Ø									<u></u>		_				
			T																																						

<u>Definition</u>: If a set A is contained in some universe U, then the complement, Ac, of A is the set of elements of Unot in A. Example: Let E and o denote the sets of even numbers and odd numbers. En o = Ø and EUO=Z. Within Z, Ec + O. Venn Diagram In a venn diagram, an outer box represents the universe under consideration and the regions within the box correspond to sets. Non-overlapping regions correspond to disjoint sets. U A-B A+B ANB) The venn diagram was named for John Venn (1834-1923) though he didnt invent them. Functions Definition: A function f, from a set A to a set B assigns to each a EA, a single element fla) in B. Definition: For a function f from A to B (written f: A -> B), the set A is the domain. Definition: The element f(a) in set B is called the image of a under f. The image of f with domain a is \{f(a): a \in A \cdots. Definition: For f: A -> B, the set B is the target A function $f: A \rightarrow B$ is defined on A and maps A into B. The image of a function is contained in its target. B target image domain ways to describe a function ⇒ list pairs (a,f(a)) b) provide a formula for f(a) from a b describe the rule in words Definition: A function f: A -> B is well-defined if the rules defining f assign to each element of a exactly one element of B. Definition: A function f is real-valued if its image is a subset of IR For real-valued functions f and q. (f+g)(x) = f(x)+g(x) and (fq)(x) = f(x)q(x)

```
Definition: A (real) polynomial in one variable is a function f: IR -> IR defined by
f(x)=Co+C1x1+...+CKX where k is a non-negative integer and co,..., Ck are real numbers.
Definition: For real polynomial f(x)=co+c,x'+...+C,x' Co,... Ck are called the coefficients of f
Definition: For real polynomial f(x)= Co+C,x'+...+ Cxxx, the degree of f is the largest d such
that Cd = D
4 The polynomial with all coefficients o has no degree.
Polynomial Names/Definitions
→ Degree O = constant
→ Degree 1 = linear
4 Degree 2 = quadratic
4 Degree 3= Cubic
Definition: A monomial in variables x.,...,xn is an expression cx,q... x,q., where c is a real
number and each a; is a non-negative integer.
A polynomial in n variable is a finite sum of monomials in n variables
Example: The function f(x,y, z) = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz is a polynomial in three variables.
Definition: The graph of a function f:A >B is the subset of A*B consisting of the ordered
pairs {(x,f(x)): XEA}
Example: we define f:[4] \rightarrow [4] by f(n)=5-n. The graph of f is \{(1,4),(2,3),(3,2),(4,1)\}
Definition: A set SSIR is bounded if there exists MEIR such that IXI & M for all XES
Definition: A set SSIR is unbounded if no such MEIR exists such that IXIEM for all XES.
Definition: A bounded function is a real-valued function whose image is bounded. That is,
for a real-valued function, f, for which there is some MER such that |f(x)| = M for all x
in the domain.
Definition: Let f: R - R and A be a set of real numbers. We say f is increasing on A if
f(x) < f(x') whenever x < x' and x, x' \in A.
4 Also called strictly increasing
Definition: Let f: \mathbb{R} \to \mathbb{R} and A be a set of real numbers f is nondecreasing on A if f(x) \le f(x')
whenever x < x' and x, x' \in A.
- Also called weakly increasing
changing < to > and < to > yields definitions for decreasing and non-increasing
```


De	fin	itio	on:	Th	e	ado	litiv	re.	inv	erso	e of	X	is	the	e r	equ	ativ	1e	of	Χ, ι	vri	tte	n	-χ											
																U																			
00	efir	<u> iti</u>	<u>on</u>	S	שט	tra	cti	on	of	y	fro	m	X	is	def	in	ed	by)	(-y	= X	+(-	· y)												
																		·																	
									ati	ve	Inv	ers	se	of	Χ	is t	the	re	cip	m	al	of	Χ,	WI	rit	en	X	l							
با	0	ha	s n	o r	eci	pn	oca	1																											
	. 0:	• • • •		0:																															
<u>U</u>	2711	1111	<u>on</u> :	Ul	VIS	ION	OT	Х	Юу	У	W	nei	n y	Ŧ () ;	S C	1et	ne	a	X	= >	·· (·	Y-1)											
1.	101			L 0	· ·							• •	., 7							7			•												
7	VV	eu	uri:	те	χ.	yι	12)	У	an	a x	• X	as	χ.																						
De	fin	i+i¢	m·	Δ		zi + '	WP	92	i 4	n (ı fi	PIC	l F	is	n	SP-	+ C) C F	.51	ich	++	10t	fr)r	ΥV	εF	(4)	e. h	O V	o·					
V			у е								1 1 1	CIC		10	и	GC		-1	30							ddi			9	٠.					
			(,ye																							IUIt			tio	n					
			E F								e	of	χ=	0.	ХE	ρ, -	-x e	ρ				ota					1	-							
					•				1					,										7											
D	efir	hiti	on	· A	n	orc	dere	bs	fie	ld	is	a -	fie	ld	wi:	Hh	a	<i>b0</i> 2	iti	ve	se.	+ P)												
) 0																																
			, >,																																
D	efir	<u> 1iti</u>	on:	ıf	Ss	F,	the	n	βе	Fi	s (in(upp	per	b	our	d	for	S	if	χs	β	fo	rc	ill :	(eS	٠.								
) 14	e	rer	yι	non	-er	MP	ͰΫ	Su	bse	t o	f f	+	hat	- h	as	an	Up	per	•
bo	on	d i	n f	Fr	as	a	lea	8+	UP	per	bc	un	d 1	n	F.																				
0.		1:22			110	. [O Olo			_			-1-			. ام د		- d	١٠١				100	1.1			11.0		70			\			
																										ica							re		
CI	OSE	ea u	ma	CI	31	דטנ	rac	गठ	n.	rie	36	TU	F 11	OY 1.	させ	ro	no	me	er	9 1	n	U I	8 C	108	ea	וט	nae	er	alv	121	on				
Di	70	nci	ior	2 1	U2	16	1 1	<u> </u>	A C	N (wd.	em	4 1	امنا	٦,	mo	Y	\/ =	111	VI C	F														
FI			- Z =								Jiu			x)(1113	بارد	/ / (
) = (1110										d z	2#0	in	nol	ies	X=	V												
			y ((x\	0											lie						7												
			(= (-																							
Pr	000	tizc	ior	1.	44	له	+ 1	F k	e (an	orc	len	ed	fie	ld	an	d i	(,y,	٤,١	1,0	e F														
	01	: X	≤ X													Re	efle	xive	2 ρ	rop	ert	y													
			(4)														nt is						per-	hy											
			(≤y														ans																		
	Or	1 : a	t le	ast	Or	e c	of)	(£y	ar	nd y	ſ≤X	no	ds			To	tal	ord	der	ing	P	rop	ert	y											
												-	0.		_																				
PY			on							ord	1en	ed	+16	Id	an						I														
			y i							V7 -	111-						dit																		
			έy														iti (9																	
			Ey EXE														ldit Itip								Hip										
			- ^ =	7	AT JC	, 0	<u> </u>	- V	107	ל'יץי		v =)	V			1110	(111)	J11C	u 11	J11	UI	1116	40	чп		٥									
P	שמת	+i2	ion	1,4	16:	le	F	he	ar	1 ()	rde	red	£;	eld	a	nd	X.v	7	u v	168	=														
			y i													<u> </u>		, -,	VI, \				a)	0	< X <	y i	mi	olie	S	D<.	V-1 4	(X -	1		
			y .							y 2	≤x	2			0<								٠,				• • •			_					
										≤ X`		_				χi																			

F	an	ple	: M	υl l	iph	, 5	98	by	6	02																							
5	98 (609	·)=((60	00-	2)((60)D+	2) =	= 60)() ² -	22	- 3	600	000) - L	1=3	590	79	6													
Ex		ple:								+ {	(a,	b) E	\mathbb{Z}^2	: a	²b'	20	z																
	Q ²	672	<u>2</u> a =	⇒ > C	lla	b -	2)	70																									
B	sth	fac	tor	s n	ทบเ	5+ 1	nav	ve ·	the	3 50	am (e s	igr	SC) ei	the	r						\ 0			al.	-1						
	1)	a>c	ar	1d 1.	ak	לכ	2									٥	R					2,) (J	<0	an	0 (Jb	< 2					
		11 :	١٥٥	0		i			:			dico	با ما	01/	000	. 1		011	٠ :	٠,٠			oir	C 11/	y 	200	ام ما	-01	، م ط	1-010	7		
	(1	II in	Teg	er 1 (pu	nrs 1	11 2	1 +	Irs:	- 4	Vu	aru	rit	EX	æf)+		al	ı ır nd	17EC	jer IiI)	יץ	ulr	3 IY	1 20	200	na	qı	XUC	ran	1T		
ΤΥ	201	the	anc An	126	ر رے. م(ل	r i	s +	he.	UN	ior	v Of	: 4	nes	ρ.				ч	110		, , , ,												
		,0			,,,,			110	011				,,,,,																				
																																	+
																																+	
																																+	+
					_																												
																																	\perp
																																	44
																																	+

Theorem 2.3: If a,b,c are odd integers, then ax2+bx+ c=0 has no solution in the set of rational numbers. Proof (by contradiction): Suppose x is a rational P/a for integers p and q, where x is in lowest terms so p and a have no common integer factor larger than 1. From $ax^2+bx+c=0$, we get $ap^2+bpq+cq^2=0$ Now, we prove ap2+bpg+cg2 cannot be 0. since x is a rational number in lowest terms, pand a cannot both be even. If theyre both odd, then all three terms are odd so $\neq 0$. if p is odd and q is even (or vice versa), then there are two even terms and one odd so ≠ 0. Thus x cannot be rational. \(\overline{\ Quantifiers/Logic Statements To understand a statement/subject it must be written about clearly. Example: The negation of "All students are male" is not "all students are not male" but "at least one student is not male" Math must avoid ambiguities. Example: The sentence "There is a real number y such that $x=y^3$ for every real number x" says that some number y is the cube root of all numbers, which is false. To say that every number has a cube root, we say "for every real number x, there is a real number y such that x=y3" Definition: A mathematical statement is an unambiguous, grammatically correct sentence which can be said to be "true" or "false" Example: Consider the statement "This statement is false" and call it P If the words "this statement" refer to another sentence Q, then P is either true or false. However, if "this statement" refers to Pitself, P must be false if it is true and true if it is false. P cannot be a mathematical statement. Definitions/Notations: 1) We use uppercase letters to denote mathematical statements 2) The truth or falsity of a statement is its truth value. 1-> Negating a statement reverses its truth value 3) We use 7 to indicate negation Ly Example: 7 P means "not P". If P is false, 7 P is true. 4) In the statement "For all x in S, P(x) is true", the variable x is universally quantified. We write this as (Yxes) P(x) 5) V is a universal quantifier b meaning "for all " or "every " 6) In the statement "There exists an x in S such that P(x) is true", the variable x is existentially quantified we write this as (3xes)P(x) 7) I is an existential quantifier 8) The set of allowed values for a variable is its Universe.

Universal (4)		helpers	Existential (3)	helpers
for all, for eve	ry		for some	
ıt		then	there exists	such that
whenever, for,		satisfies	at least one	for which
any, a, arbitra		must, is	some	satisfies
let		be	has a	such that
Example: Consic	ler the stateme	nt "If n is even	, the n is the su	m of two odd numbers "Letting
E be the set of	feven integers	and or be the	set of odd, and	l lelting P(n,x,y) be "n=x+y".
	· becomes: (Yr			
Example: Consid	der the exercise	e "Let a and b	be real numbers	. Prove that $ax^2+bx=a$ has a real
solution". This b	becomes (Ya, b	eR)(JXER)(QX²	+bx=a). when a=0) => X=0 works for all b. when
a = 0, then the	quadratic form	ula x= -b+√b ² + 2a	492 works.	
Evanale: Cana	200 (VVC A) (7.10	9)0(v)) and	KJ9 (A 3XV)(83YE)	
				true if for each x we can pick
		s true it there	is a y mar will	I always work regardless of
the choice of x	+ + + + + + + + + + + + + + + + + + + +			
unbounded: (Compound Sta		(M< (x)1)	y if", and "implic	es" to build compound statements
Name	Symbol N	1eaning	condition f	or truth
Negation	7P 1	not P	P false	
Conjunction		and Q	both true	
Disjunction		or Q	at least or	ne true
Biconditional		if and only if G		
Conditional		implies Q		penever P true
Definition: In t	he conditional	statement P=>	Q,P is the hypo	thesis
Definition: In t	ne conditional	statement P=	Q, Q is the con	dusion
Definition: The	statement Q=	>P is the conv	rerse of P=>Q	
Definition: A lis	sting of the tru	oth value comp	utation for each	choice of truth values is a
truth table				

Р	Q	P=> Q	٦Ρ	(¬P) v Q	(P=>Q)<=	(qr)) (:	va)
T	7	T	4	Т		Γ	
T	F	F	F	F	•	T	
F	Т	Τ	T	Τ	•	τ	
F	F	Т	Т	Τ	-	Τ	
Defin	ition:	An expr	ession	is called a	tautology	y if its	always true
A sto	Hemei	nt debe	odina	on two var	ables x	, need	s both variables to be quantified order
matt		и осро	ia.i.g				
Defin	ition:	Tivo lo	oica) 6	expressions	X Y Ore	logical	lly equivalent if they have the same
							of the variables
.,,,,,,				3.11,0,71), (((),()	Value	
Τωο	logica	illy equi	valent	statement	s are in	terchar	ngable in a proof.
	3						
Exam	ple: F	or state	ment	s P,Q, the	following	a are	equivalent:
	P / Q)			v (7Q)			<u>'</u>
	PvQ)			/(¬Q)			
c) ¬ (P=>Q)	P 1(-	1Q)			
	<=> Q			$Q) \wedge (Q \Rightarrow P)$			
e) P			(¬P):	=>Q			
f) P=				=> (¬P)			
					out elem	nent X	EU, we often write (YXEU)(P(X)=>Q(X))
us P	(X)—/(Q(X) or	P - 7Q				
1 + A=	ξχευ:	P(x) is-	true3	then P(x)=	Q(x) is	(Axe A)	Q(x)
IF B=	ξ χε Մ:	Q(x) is	truez	then $P(x) = x$	Q(x) is	A S B ar	and $Q(x) \Rightarrow P(x)$ is $B \subseteq A$ and $P \Longleftrightarrow Q$ is $A = B$
$x \in A^c$		<=>	not (XE A)	<=>	¬(xe	A)
XE A L		<=>	(XEA)	or (xeB)	<=>	(xeA)v(xeB)
xe A	nΒ	<=>		and (xeB)	<=>	(xe A)^(xeB)
A⊆B		(=>	(AXE A)(xeB)	<=>	(XEA) => (xe B)
Defin	ition:	The lint	ors oct		lection (otes Fr	consists of all elements that belong to
	the		erseci.	ion of a co	HECTION C	3013	Consists of all clements find belong to
			ion of	f a collectio	n of sets	consis	its of all elements that belong to at least
one	of the	sets.					
wher	n x ar	nd y are	num	bers, then	X=y is H	ne san	ne as x≤y and y≤x. When A and B are
							1 statements Pand Q, P<=>Q means
		Q=>P				J	
1) (^ ^	0 VC =	4 ^c u B ^c					
ZJCA	7R)_=	A ^c n B ^c					

El	em	en	ta	ry	Pr	00	<u> Fs</u>																											
			_	_		_																											_	
Me	th	ods	of	ρ	roi	/in	9	P=>	Ø	_																				_			_	
L ₃	Dir	rec	ł M	eth	100) :	Ās:	sun	ne	Ρ	is t	rue	2 ai	nd	US	e	ma	the	m	ati	cal	re	298	oni	ng	to	pr	OVE	; Q	l ti	rve	,		
								hod																									_	
4	Me	th	od	of	CO	ntr	ad	icti	ion	: A	UZZ	me	: P	an	d -	ı Q	an	d c)bt	air	a	CO	ntr	ad	icti	on								
Ex	am	ple	: 11	X	an	d y	ar	e k	oH	n 0	dd	int	ege	ers,	th	en	χ-	ŀУ	is e	ver).													
								nd														rs	k,.	٤ :	sucl	n H	1at	- х	= 2	K+l	ar	nd		
								ties																										
				Х	+y:	= 2	K+1	+ 2	L +	=	2K	+2	2+2	2 =	2(C+l	,+ l ['])																
	Th	is	is t	wi	ce	an	in	teg	er.	50	it i	s e	ven).																				
Ey/	าเก	nle	: Δ	n i	nte	ΛĐΙ	is	s ev	(0 K)	(£	nr	nd .	anl	i	£ i	te	SOL	10×1	o ic	· PI	<i>io</i> n													
LA	111 <u>1</u> 41	n	is (eve	n.	the	2n	n=	2 K	f	or	a l	2111 4	у <u>'</u> 72.		13	Squ	ur	ا د	,	1011													
								K2)							dir	ect	ion	is	tr	je.														
																					is	n.	W	e (an	pr	OV	2 #	nis	VI	a t	he		
								thc		'				-					·															
								int		er	wi	th	m	-21	(+	f	or.	a k	(E)	Z .														
								41																										
Ex	am	ple	2: T	hei	re	is	no	lai	rge	5+	rea	ılr	מטו	160	er.																			
	As	SU	me	+	nat	1 0	r	all	xε	IR,	37	e r	R 8	SUC.	h t	ha	7	ZX	. If	χ:	:군+	1+	he	n :	223	2+1	=>	0	1 2	w	rick	n is	a	
			rac																															
																																	_	
																																	_	
																																_	_	
																																	_	
																																	_	_
																																	_	
																																	_	
																																	_	
																																	_	
																																	+	
																																	+	_
																																		+
																																	+	

```
Chapter 3: Induction
Definition: The set in of natural numbers is the intersection of all sets ser that have the
following two properties:
   a) 1 e S
   b) If XES, then X+1ES
Theorem 3.6 (Principle of Induction): For each natural number n, let P(n) be a mathematical
statement if properties (a) and (b) hold, then for each new the statement P(n) is true
   a) P(1) is true
   b) For KEIN, if P(k) is true, then P(k+1) is true
Proposition 3.7: For n \in \mathbb{N}, 1+2+...+n = \frac{n(n+1)}{2}
   Proof: since 1=1.2/2 P(1) is true. Assume P(K), then
         P(K+1) = P(K) + K + 1 = \frac{K(K+1)}{2} + (K+1) = (K+1)(\frac{K}{2} + 1) = \frac{(K+1)(K+2)}{2}
   Thus P(n) holds.
Definition: A sequence is a function whose domain is IN
Z indicates summation
                                $\frac{1}{2} f(i) = sum of f(i) over integers i where a \frac{1}{2} i \frac{1}{2} b
Proposition 3.12: Suppose <a> and <b> are sequences of real numbers and that n &N
   a) If Ce^{R}, then \sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i
   b) If ai = bi for all it in, then \frac{n}{2} ai \leq \frac{n}{2} bi
   c) If 0 \le a_i \le b_i for all i.e.N, then \prod_{i=1}^n a_i \le \prod_{i=1}^n b_i
      where IT indicates multiplication products
Lemma 3.13: If x,y & IR and n& N, then x^n - y^n = (x-y)(x^{n-1} + x^{n-2}y + ... + xy^{n-2} + y^{n-1})
Corollary 3.14 (The Geometric Sum): If q \in \mathbb{R}, q \neq 1 and n is a non-negative integer, then \sum_{i=0}^{n+1} q^i = \frac{q^{n-1}}{q-1}
   Proof: we use Lemma 3 13 with x=q and y=1 to get
                      q^{n-1} = (q-1)(q^{n-1} + q^{n-2} + ... + 1)
   and divide by q-1.
Example: The NCAA basketball tournament starts with 64 teams. How many games are
played to get a champion?
    Chame Numbers: 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1
   Total games: 1+2+4+8+16+32= $\frac{5}{2}i=26-1=63
```

Proof: Use induction For n=1, 1 Assume daim holds for n, then n Proposition 3.19: If \$\cdot x\$,, \$\cdot x\$ are numbers in the interval \$\(\cdot 0, 1 \) Proposition 3.19: If \$\cdot x\$,, \$\cdot x\$ are numbers in the interval \$\(\cdot 0, 1 \) The proof: By induction Proof: By induction Proof: By induction Proof: By induction If \$\((1-x() \geq 1 + \frac{2}{2} \geq x \) Proposition 3.21: For all nen 3.21: If \$\(\text{is a polynomial} \) Proof: By induction Proof: By induction If \$\((1-x() \geq 1 + \frac{2}{2} \geq x \) Proposition 3.21: For all nen 3.21: If \$\(\text{is a polynomial} \) Proof: By induction Proof: By definition of a polynomial, \$\((x \geq \frac{2}{2} \geq x \geq x \) Proof: By definition of a polynomial, \$\((x \geq \frac{2}{2} \geq x \ge	Prop	osi	tio	n	3.	16	: }{	Y	ne	M.	a	nd	9	2	2,	Hh	en	V	<u> </u>	gr																						
Assume claim holds for n, then ncq^n, n+ sh+n=2n = q k k q q = q^k+ 2 Proposition 3.19: If K_1,, X_n are numbers in the interval [0,1] The proof: By induction. Corollary 3.20: If O = q < 1 and neN, then (1-a)^n ≥ 1-na. Proof: This is proposition 3.19 with X_1==X_n=a. 2 Proposition 3.21: For all neN, 2 = 2 = n(n+1)(2n+1) Lemma 3.23: If F is a polynomial of degree d, then a is a zero of F if and only if F(x)=(x-a)h(x) for some polynomial h of degree d-1. Proof: By definition of a polynomial, f(x) = 2 = 2 = c + x = with d-a non-negative integer and ca ≠ 0. If f(x)=(x-a)h(x) holds, then f(a)=0. Assuming f(a)=0, then since f(x)= c + 2 = c + c = c + c = c + c = c = c = c = c																																										
Proposition 3.19: If x_1, \dots, x_n are numbers in the interval $(0, 1)$ $\frac{1}{12}(1-x_1) \ge 1 - \frac{1}{12}(x_1)$ $\frac{1}{12}(1-x_1) \ge 1 - \frac{1}{12}(1-x_1)$ $\frac{1}{12}(1-x_1)$ $\frac{1}{12}(1-x$	F	or	n=	۱, ۱	<1	2	by	C	le.	fii	nit	io	n	Of	9																											
Proof: By induction. \square Corollary 3.20: If $D \in A \subseteq I$ and $n \in \mathbb{N}$, then $(I-a)^n \ge I - na$. Proof: By induction 3.19 with $X_1 = \times x_n = 0$. \square Proposition 3.21: For all $n \in \mathbb{N}$, $\frac{1}{2} \cdot \frac{1}{2} \cdot$	A:	SSU	me	2	la	in	η į	101	ld.	2	For	r	<u>,</u>	th	er	1	n <	q'	n <u>.</u>	n-	1 5	<u>í</u> n)+	<u> </u>	2n	≤ (ZΚ	< 9	- 9	=	qk	+1	. [Z			_					
Proof: By induction. \square Corollary 3.20: If $D \in A \subseteq I$ and $n \in \mathbb{N}$, then $(I-a)^n \ge I - na$. Proof: By induction 3.19 with $X_1 = \times x_n = 0$. \square Proposition 3.21: For all $n \in \mathbb{N}$, $\frac{1}{2} \cdot \frac{1}{2} \cdot$		٠,					_											_					_			_									_	+	_			_	-	
Proof: By induction. \square Corollary 3.20: If $D \le a \le 1$ and $n \in \mathbb{N}$, then $(1-a)^n \ge 1-na$. Proof: This is proposition 3.19 with $x_1 = \times x_n = a$. \square Proposition 3.21: For all $n \in \mathbb{N}$, $\frac{x_n}{x_n} = \frac{x_n}{x_n} = a$. \square Proof: By induction. \square Lemma 3.23: If F is a polynomial of degree d , then a is a zero of f if and only if $F(x) = (x-a)^n (x$	Propo	120	101	<u>13</u>	.10	<u>:</u>	lf_	Χ1,			l v	3									i	nti	er	val		٦, ١]								+	+	\dashv				-	
Proof: By induction. \square Corollary 3.20: If $D \le a \le 1$ and $n \in \mathbb{N}$, then $(1-a)^n \ge 1-na$. Proof: This is proposition 3.19 with $x_1 = \times x_n = a$. \square Proposition 3.21: For all $n \in \mathbb{N}$, $\frac{x_n}{x_n} = \frac{x_n}{x_n} = a$. \square Proof: By induction. \square Lemma 3.23: If F is a polynomial of degree d , then a is a zero of f if and only if $F(x) = (x-a)^n (x$									+			<u>†</u> (-	- X	i)	<u> </u>	+;	Ż	X																+	+	+			-	-	-
Proposition 3.21: For all neIN $\frac{1}{2}$; $\frac{1}{2}$,	Pr	00	F: 1	3у	i	nc	lu	ti	01									, - 1																								
Proposition 3.21: For all neIN $\frac{1}{2}$; $\frac{1}{2}$,	Coro	llor		3 2	D :)t		<	<u> </u>			mc	Ιν	16	lki	7	ho	n	(1-0	n	\ >	1_	no												+						
Proposition 3.21: For all not N, $\frac{\pi}{2}$, $\frac{1}{2}$, $\frac{\pi}{2}$,																																				+	\top					
Lemma 3.23: If f is a polynomial of degree d, then a is a zero of f if and only if f(x)=(x-a)h(x) for some polynomial h of degree d-1. Proof: By definition of a polynomial, f(x)=\frac{1}{2}c; x^i with d a non-negative integer and cd \div 0. If f(x)=(x-a)h(x) holds, then f(a)=0. Assuming f(a)=0, then since f(x)=\frac{1}{2}cix^i we have \[\begin{align*} f(x)=f(x)=f(x)=(x-a)h(x) holds, then f(a)=0. \] Assuming f(a)=0, then since f(x)=\frac{1}{2}cix^i we have \begin{align*} f(x)=f(x)-f(a)=co-co+\frac{1}{2}cix^i (x^i-a^i) & \frac{1}{2}cix^i (x^i-a^i) \] and by Lemma 3.13 for (21, x^i-a^i=(x-a)h(x), where \hi(x)=\frac{1}{2}x^i i a^{i-1} \] Using Proposition 3.12a, factoring (x-a) gives \(f(x)=(x-a)h(x), where \hi(x)=\frac{1}{2}x^i i a^{i-1} \] Since each hi has degree i-1, h is of degree d-1. \[\begin{align*} \text{Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step d=0 and Inductive step d=1 \[\begin{align*} \text{Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. \[\end{align*} Strong Induction Theorem 3.28 (Strong Induction Principle): Let \(\frac{1}{2}P(n): nein\) be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every hein, P(n) is true. \end{align*} \text{DFOF K22, (f P(i) is true for all i/K, then P(K) is true.}					Ť		F			-01			Ť						•																							
Lemma 3.23: If f is a polynomial of degree d, then a is a zero of f if and only if f(x)=(x-a)h(x) for some polynomial h of degree d-1. Proof: By definition of a polynomial, f(x)=\frac{1}{2}c; x^i with d a non-negative integer and cd \div 0. If f(x)=(x-a)h(x) holds, then f(a)=0. Assuming f(a)=0, then since f(x)=\frac{1}{2}cix^i we have \[\begin{align*} f(x)=f(x)=f(x)=(x-a)h(x) holds, then f(a)=0. \] Assuming f(a)=0, then since f(x)=\frac{1}{2}cix^i we have \begin{align*} f(x)=f(x)-f(a)=co-co+\frac{1}{2}cix^i (x^i-a^i) & \frac{1}{2}cix^i (x^i-a^i) \] and by Lemma 3.13 for (21, x^i-a^i=(x-a)h(x), where \hi(x)=\frac{1}{2}x^i i a^{i-1} \] Using Proposition 3.12a, factoring (x-a) gives \(f(x)=(x-a)h(x), where \hi(x)=\frac{1}{2}x^i i a^{i-1} \] Since each hi has degree i-1, h is of degree d-1. \[\begin{align*} \text{Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step d=0 and Inductive step d=1 \[\begin{align*} \text{Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. \[\end{align*} Strong Induction Theorem 3.28 (Strong Induction Principle): Let \(\frac{1}{2}P(n): nein\) be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every hein, P(n) is true. \end{align*} \text{DFOF K22, (f P(i) is true for all i/K, then P(K) is true.}	Propo	sit	10	1 3	3.2	21:	F	or	q	11	n	E IN	1	į.	25	2	r	1(n+	6	2r	1+1	2																			
Lemma 3.23: If f is a polynomial of degree d, then a is a zero of f if and only if $f(x)=(x-a)h(x)$ for some polynomial h of degree d-1. Proof: By definition of a polynomial, $f(x) = \frac{1}{2a}Ci$, x^i with d a non-negative integer and $cd \neq 0$. If $f(x)=(x-a)h(x)$ holds, then $f(a)=0$. Assuming $f(a)=0$, then since $f(x)=(a+\frac{1}{2a}Ci)x^i$, we have $f(x)=f(x)-f(a)=(a-C-C+\frac{1}{2a}Ci)x^i-a^i=(a-C+\frac{1}{2a}Ci)x^i$, we have $f(x)=f(x)-f(a)=(a-C-C+\frac{1}{2a}Ci)x^i-a^i=(a-C+1)x^i$ and by Lemma 3.13 for $(x)=(x-a)h(x)$, where $h(x)=\frac{1}{2a}(x^i-a^i)$ Using Proposition 3.12a, factoring $(x-a)$ gives $f(x)=(x-a)h(x)$, where $h(x)=\frac{1}{2a}(x^i-a^i)$ Since each h_i has degree $i-1$, h is of degree $d-1$. a Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step d =0 and inductive step d =1. a Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x)=g(x)$ and h =f-g, then $h(x)$ =0 and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. a Strong Induction Theorem 3.28 (Strong Induction Principle): Let $f(x)=h(x)$ held $f(x)=h(x)$ be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $f(x)=h(x)$ is true. Definition of a polynomial $f(x)=h(x)$ is true. Definition of a polynomial of degree $f(x)=h(x)$ held $f(x)=h(x)$ is true. Definition of a polynomial of degree $f(x)=h(x)$ has a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $f(x)=h(x)$ is true. Definition of a polynomial of degree $f(x)=h(x)=h(x)$ has a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $f(x)=h(x)$ is true.		_	_	_	_			_	_																																	
For some polynomial h of degree d-1. Proof: By definition of a polynomial, $f(x) = \frac{1}{2^3} \operatorname{ci} x^i$ with d-a non-negative integer and $\operatorname{Ca} \neq 0$. If $f(x) = (x-a)h(x)$ holds, then $f(a) = 0$. Assuming $f(a) = 0$, then Since $f(x) = \frac{1}{6^3} \operatorname{ci} x^i$, we have $f(x) = f(x) - f(a) = \frac{1}{6^3} \operatorname{ci} (x^i - a^i) = \frac{1}{6^3} \operatorname{ci} (x^i - a^i)$ and by Lemma 3.13 for $i \geq 1$, $x^i - a^i = (x-a)h_i(x)$, where $h_i(x) = \frac{1}{6^3} e^i x^i - a^{i-1}$ Using Proposition 3.12a, factoring $(x-a)$ gives $f(x) = (x-a)h_i(x)$, where $h_i(x) = \frac{1}{6^3} e^i x^i - a^{i-1}$ Since each h_i has degree $i-1$, h_i is of degree $d-1$. Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step $d=0$ and inductive step $d \geq 1$ Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x) = g(x)$ and $h = f-g$, then $h(x) = 0$ and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (strong Induction Principle): Let $\{P(n): n \in \mathbb{N}\}$ be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $n \in \mathbb{N}$, $P(n)$ is true. a) $P(i)$ is true b) For $k \geq 2$, if $P(i)$ is true for all $i < k$, then $P(k)$ is true.					Ť																																					
For some polynomial h of degree d-1. Proof: By definition of a polynomial, $f(x) = \frac{1}{2^3} \operatorname{ci} x^i$ with d-a non-negative integer and $\operatorname{Ca} \neq 0$. If $f(x) = (x-a)h(x)$ holds, then $f(a) = 0$. Assuming $f(a) = 0$, then Since $f(x) = \frac{1}{6^3} \operatorname{ci} x^i$, we have $f(x) = f(x) - f(a) = \frac{1}{6^3} \operatorname{ci} (x^i - a^i) = \frac{1}{6^3} \operatorname{ci} (x^i - a^i)$ and by Lemma 3.13 for $i \geq 1$, $x^i - a^i = (x-a)h_i(x)$, where $h_i(x) = \frac{1}{6^3} e^i x^i - a^{i-1}$ Using Proposition 3.12a, factoring $(x-a)$ gives $f(x) = (x-a)h_i(x)$, where $h_i(x) = \frac{1}{6^3} e^i x^i - a^{i-1}$ Since each h_i has degree $i-1$, h_i is of degree $d-1$. Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step $d=0$ and inductive step $d \geq 1$ Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x) = g(x)$ and $h = f-g$, then $h(x) = 0$ and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (strong Induction Principle): Let $\{P(n): n \in \mathbb{N}\}$ be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $n \in \mathbb{N}$, $P(n)$ is true. a) $P(i)$ is true b) For $k \geq 2$, if $P(i)$ is true for all $i < k$, then $P(k)$ is true.	Lem	mc	3	23		IF	f	is	a	po	Лy	nc	m	nia	1	of	de	2q	re	e c	1, -	Hhe	en	q	is	a	ze	ro	of	f	i	fc	anc	0	nly	į į.	4	40	x)=	=(x·	-a)	h(x
Proof: By definition of a polynomial, $f(x) = \frac{1}{2} \cdot c \cdot x^2$ with a non-negative integer and cd to. If $f(x) = (x-a)h(x)$ holds, then $f(a) = 0$. Assuming $f(a) = 0$, then since $f(x) = c + \sum_{i=1}^{2} c_i \cdot x^i$, we have $f(x) = f(x) - f(a) = c - c - c + \sum_{i=1}^{2} c_i \cdot (x^i - a^i) = \sum_{i=1}^{2} c_i \cdot (x^i - a^i)$ and by Lemma 3.13 for $i \ge 1$, $x^i - a^i = (x-a)h_i(x)$, where $h_i(x) = \sum_{i=1}^{2} x^i - i \cdot a^{i-1}$ Using Proposition 3.12a, factoring $(x-a)$ gives $f(x) = (x-a)h(x)$, where $h(x) = \sum_{i=1}^{2} h_i(x)$. Since each h_i has degree $i-1$, h is of degree $d-1$. Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step $d = 0$ and inductive step $d \ge 1$ Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x) = g(x)$ and $h = f - g$, then $h(x) = 0$ and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. \square Strong Induction Theorem 3.28 (Strong Induction Principle): Let $\{P(h): n \in \mathbb{N}\}$ be a sequence of mathematical Stotements. If properties (a) and (b) below hold, then for every $n \in \mathbb{N}$, $P(n)$ is true. b) For $k \ge 2$, if $P(k)$ is true for all $k \le k$, then $P(k)$ is true.	for :	OV	ne.	200	W	n	m	in	١	h	V.	2	lec	re	P.	d	- 1	٦																	'							
and by Lemma 3.13 for $i \ge 1$, $x^i - a^{iz} = (x - a)h_i(x)$, where $h_i(x) = \frac{1}{2} \sum_{i=1}^{n} x^{i-1} a^{i-1}$ Using Proposition 3.12a, factoring $(x - a)$ gives $f(x) = (x - a)h_i(x)$, where $h_i(x) = \frac{1}{2} \sum_{i=1}^{n} x^{i-1} a^{i-1}$ Using Proposition 3.12a, factoring $(x - a)$ gives $f(x) = (x - a)h_i(x)$, where $h(x) = \frac{1}{2} h_i(x)$. Since each h_i has degree $i - 1$, h is of degree $d - 1$. \square Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step $d = 0$ and Inductive step $d \ge 1$ \square Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x) = g(x)$ and $h = f - g$, then $h(x) = 0$ and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. \square Strong Induction Theorem 3.28 (Strong Induction Principle): Let $\{P(h) : n \in \mathbb{N}\}$ be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $h \in \mathbb{N}$, $P(h)$ is true. a) $P(1)$ is true b) For $K \ge 2$, if $P(i)$ is true for all $i < K$, then $P(K)$ is true.	Pı	00	F: 1	3у	d	ef	in	it	io	n	of	a	po	oly	n	o n	nic	וג	1	FC:	()	= 2	=0 4 4	Ci	χċ	u)it	h c	1) I	10	n-	ne	90	ati	ve		int	-ec	jer		
and by Lemma 3.13 for $i \ge 1$, $x^i - a^{iz} = (x - a)h_i(x)$, where $h_i(x) = \frac{1}{2} x^{i-1} a^{i-1}$ Using Proposition 3.12a, factoring $(x - a)$ gives $f(x) = (x - a)h_i(x)$, where $h_i(x) = \frac{1}{2} x^{i-1} a^{i-1}$ Using Proposition 3.12a, factoring $(x - a)$ gives $f(x) = (x - a)h_i(x)$, where $h(x) = \frac{1}{2} h_i(x)$. Since each h_i has degree $i - 1$, h is of degree $d - 1$. \square Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step $d = 0$ and Inductive step $d \ge 1$ \square Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x) = g(x)$ and $h = f - g$, then $h(x) = 0$ and by Theorem 3.24, it must be the zero polynomial since it has $0 \ge eroes$. \square Strong Induction Theorem 3.28 (Strong Induction Principle): Let $\{P(h): n \in \mathbb{N}\}$ be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $h \in \mathbb{N}$, $P(h)$ is true. a) $P(1)$ is true b) For $K \ge 2$, if $P(i)$ is true for all $i < K$, then $P(K)$ is true.	Qı	nd	Cd	+ ().	lf	f	CX)=	: ()	K-C	1)r	ι(x	()	hc	ble	s,	₩	nei) f	(a)=	0	•																		
and by Lemma 3.13 for \$\tiz\$1, \$x^{\tilde{\chi}} = (x-q)h_{\tilde{\chi}}(x)\$, where \$h_{\tilde{\chi}}(x) = \frac{\tilde{\chi}}{2} = \frac{\tilde{\chi}}{2} \frac{\tilde{\chi}}{2} = \tilde{\ch	As	SUI	miı	19	f	(a) =	0,	+	-he	en	S	in	ce	f	(x) =	C	0+	ان= الم	C	ίX	i	u	je	ha	ve															
Using Proposition 3.12a, factoring (x-a) gives $f(x) = (x-a)h(x)$, where $h(x) = \sum_{i=1}^{d} h_i(x)$. Since each hi, has degree i-1, h is of degree d-1. Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step d=0 and inductive step d=1. Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x) = g(x)$ and h=f-g, then $h(x) = 0$ and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let $\{p(n): n \in \mathbb{N}\}$ be a sequence of mathematical Statements. If properties (a) and (b) below hold, then for every $n \in \mathbb{N}$, $p(n)$ is true. b) For $k \ge 2$, if $p(i)$ is true for all $i < k$, then $p(k)$ is true.		t	(x)	= 1	FC	x)	- f	Ca) :	= (.0	·C ₀	+	J. Ma	5 C	iC	χ i <u> </u> -	-a	(نا	= ;	952	Ci	(x	Ċ_	ai)																	
Using Proposition 3.12a, factoring (x-a) gives $f(x)=(x-a)h(x)$, where $h(x)=\frac{d}{2} h_{i}(x)$. Since each hi has degree i-1, h is of degree d-1. Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step d=0 and inductive step d≥1. Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let $f(x)=g(x)$ and $h=f-g$, then $h(x)=0$ and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let $\{P(n): n\in \mathbb{N}\}$ be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every $h\in \mathbb{N}$, $P(n)$ is true. b) For $K \ge 2$, if $P(i)$ is true for all $i \le K$, then $P(K)$ is true.	Q1	nd	by	Le	m	m	a	3.1	3	s f	or	· i	2)	,	χ	i_(a i	= (Cx-	-q)	hi	, Сх	(),	w	ne	re	1	າເເ	x):	: Z	, , ,	(i-	i o	j-1								
Theorem 3.24: Every polynomial of degree d has at most d zeros. Proof: Use induction with basis step d=0 and inductive step d=1 Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let & P(n): nein3 be a sequence of mathematical Statements. If properties (a) and (b) below hold, then for every nein, P(n) is true. a) P(1) is true b) For K=2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td>Us</td><td>sin</td><td>g P</td><td>rop</td><td>20</td><td>sit</td><td>-io</td><td>n</td><td>3.</td><td>.12</td><td>α,</td><td>f</td><td>act</td><td>-DY</td><td>in</td><td>g</td><td>(x</td><td>-a</td><td>) (</td><td>giv</td><td>es</td><td>; {</td><td>FCx</td><td>()=</td><td>(x-</td><td>-a)</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>าเ</td><td>(x</td><td>).</td><td></td><td></td><td></td></k,>	Us	sin	g P	rop	20	sit	-io	n	3.	.12	α,	f	act	-DY	in	g	(x	- a) (giv	es	; {	FCx	()=	(x-	-a)				_						1	า เ	(x) .			
Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the Zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let & P(n): nein3 be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every nein, P(n) is true. a) P(1) is true b) For K≥2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td>5</td><td>nu</td><td>2 e</td><td>ac</td><td>h</td><td>h</td><td>; <i>k</i></td><td>na.</td><td>S</td><td>de</td><td>egr</td><td>ree</td><td>i</td><td>,-I</td><td>, V</td><td>n i</td><td>S</td><td>of</td><td>2 (</td><td>deg</td><td>re</td><td>е</td><td>d</td><td>-1.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></k,>	5	nu	2 e	ac	h	h	; <i>k</i>	na.	S	de	egr	ree	i	,-I	, V	n i	S	of	2 (deg	re	е	d	-1.																		
Corollary 3.25: Two real polynomials are equal if and only if their corresponding coefficients are equal. Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the Zero polynomial since it has 0 Zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let & P(n): neIn3 be a sequence of mathematical Statements. If properties (a) and (b) below hold, then for every held, P(n) is true. a) P(1) is true b) For KZZ, If P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td>Then</td><td>rei</td><td>m</td><td>2 7</td><td>u</td><td>F</td><td>VΔ</td><td>rv</td><td>_</td><td>) </td><td>w</td><td></td><td>ni</td><td>۸۱</td><td>^</td><td>t,</td><td>مام</td><td>٥٢</td><td>~00</td><td>٦</td><td>V</td><td>10 9</td><td>2</td><td><u>1</u></td><td>wr</td><td>c+</td><td>Ч</td><td>20</td><td>rn 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>+</td><td></td><td></td><td></td><td></td><td></td></k,>	Then	rei	m	2 7	u	F	VΔ	rv	_) 	w		ni	۸۱	^	t,	مام	٥٢	~00	٦	V	10 9	2	<u>1</u>	wr	c+	Ч	20	rn 1							+	+					
Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let & P(h): neIn3 be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every held, P(n) is true. a) P(1) is true b) For K=2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td>Pı</td><td>00</td><td>F:</td><td>US:</td><td><u>-</u>-</td><td>in</td><td>dı</td><td>)C-</td><td>ti(</td><td>or</td><td>yı I (</td><td>vit</td><td>-h</td><td>b</td><td>as</td><td>is</td><td>24</td><td>e</td><td>P</td><td>d =</td><td>0</td><td>ar</td><td>nd</td><td>in</td><td>dυ</td><td>ctiv</td><td>ie i</td><td>ste</td><td>p.</td><td>d ≥</td><td>21</td><td>Z</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></k,>	Pı	00	F :	US:	<u>-</u> -	in	dı)C-	ti(or	yı I (vit	-h	b	as	is	24	e	P	d =	0	ar	nd	in	dυ	ctiv	ie i	ste	p.	d ≥	21	Z										
Are equal. Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the zero polynomial since it has 0 zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let & P(h): neln3 be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every heln, P(n) is true. a) P(i) is true b) For K=2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td>Descri</td><td>100</td><td></td><td>0.5</td><td></td><td>-</td><td></td><td></td><td></td><td>-1</td><td>000</td><td>1</td><td></td><td>10-</td><td></td><td>10</td><td></td><td>_</td><td></td><td></td><td></td><td>: 6</td><td></td><td>~ ~l</td><td></td><td>NI -</td><td>:0</td><td>A 1-</td><td></td><td>, _</td><td></td><td></td><td></td><td></td><td>4:</td><td>+</td><td>_</td><td>200</td><td>.0.</td><td>2</td><td>1.</td><td>_</td></k,>	Descri	100		0.5		-				-1	000	1		10-		10		_				: 6		~ ~l		NI -	:0	A 1-		, _					4:	+	_	200	.0.	2	1.	_
Proof: Let f(x)=g(x) and h=f-g, then h(x)=0 and by Theorem 3.24, it must be the Zero polynomial since it has 0 Zeroes. Strong Induction Theorem 3.28 (Strong Induction Principle): Let & P(h): new3 be a sequence of mathematical statements. If properties (a) and (b) below hold, then for every new, P(n) is true. a) P(1) is true b) For K≥2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td></td><td></td><td>1.</td><td></td><td>٠ ر</td><td>10</td><td>UU</td><td>r</td><td>כנ</td><td>AI</td><td>טץ</td><td>iyr</td><td>10</td><td>TY)</td><td>14</td><td>13</td><td>uľ</td><td>C</td><td><u>اح</u></td><td>400</td><td>AI.</td><td>17</td><td>u</td><td>IU</td><td>Ur</td><td>пу</td><td>17</td><td>П</td><td>CI Y</td><td>C</td><td>OV.</td><td>16</td><td>spo</td><td>) (الر</td><td>۱۱۲</td><td>iy</td><td>ď</td><td>ノピー</td><td><u>+1</u></td><td>cie</td><td>1)7;</td><td>2</td></k,>			1.		٠ ر	10	UU	r	כנ	AI	טץ	iyr	10	TY)	14	13	uľ	C	<u>اح</u>	400	AI.	17	u	IU	Ur	пу	17	П	CI Y	C	OV.	16	spo) (الر	۱۱۲	iy	ď	ノピー	<u>+1</u>	cie	1)7;	2
Strong Induction Theorem 3.28 (Strong Induction Principle): Let & P(n): neIn3 be a sequence of mathematical Statements. If properties (a) and (b) below hold, then for every neIn, P(n) is true. a) P(1) is true b) For KZ2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td></td><td></td><td></td><td></td><td>t</td><td>(x</td><td>)=</td><td>n C</td><td>x)</td><td></td><td>100</td><td>1 k</td><td>۱=۰</td><td>t-</td><td>Ω.</td><td>++</td><td>101</td><td>n</td><td>h()</td><td>()=</td><td>0</td><td>ar</td><td>h</td><td>by</td><td>, T</td><td>hei</td><td>ore</td><td>m</td><td>3.</td><td>24</td><td>. i</td><td>+</td><td>mı</td><td>ıst</td><td>b</td><td>ا م</td><td>th</td><td>P. 3</td><td></td><td>rD</td><td></td><td></td></k,>					t	(x) =	n C	x)		100	1 k	۱=۰	t-	Ω.	++	101	n	h()	()=	0	ar	h	by	, T	hei	ore	m	3.	24	. i	+	mı	ıst	b	ا م	th	P. 3		rD		
Theorem 3.28 (Strong Induction Principle): Let & P(n): neIN3 be a sequence of mathematical Statements. If properties (a) and (b) below hold, then for every neIN, P(n) is true. a) P(1) is true b) For K≥2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ī.</td><td>, .</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></k,>																							,0							Ī.	, .											
statements. If properties (a) and (b) below hold, then for every held, P(n) is true. a) P(1) is true b) For KZ2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td>Stro</td><td>ng</td><td>ın</td><td>dυ</td><td>ct</td><td>-ic</td><td>n</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></k,>	Stro	ng	ın	dυ	ct	-ic	n																														_					
statements. If properties (a) and (b) below hold, then for every held, P(n) is true. a) P(1) is true b) For KZ2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td>Then</td><td>rpv</td><td>n i</td><td>2 2</td><td>8</td><td>(5</td><td>+v</td><td></td><td></td><td>In</td><td>١٩٠</td><td>10+</td><td>in</td><td><u></u></td><td>D۷</td><td>·is</td><td>di.</td><td>710</td><td>٠١٠</td><td>ء ا</td><td>+</td><td>Şr</td><td>۱ ۱۵</td><td>٠,٠</td><td>n c</td><td>INI T</td><td>4 h</td><td>0 0</td><td>, ,</td><td>P</td><td>מנו</td><td>n</td><td>` P</td><td>~€</td><td>IO.</td><td>707</td><td></td><td>o M</td><td>00-</td><td>tic.</td><td>1</td><td></td></k,>	Then	rpv	n i	2 2	8	(5	+v			In	١٩٠	10+	in	<u></u>	D۷	·is	di.	710	٠١٠	ء ا	+	Şr	۱ ۱۵	٠,٠	n c	INI T	4 h	0 0	, ,	P	מנו	n	` P	~ €	IO.	707		o M	00-	tic.	1	
a) P(1) is true b) For KZ2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7)</td><td>CII</td><td>141</td><td>1100</td><td>A I</td><td></td></k,>																																					7)	CII	141	1100	A I	
b) For KZ2, if P(i) is true for all i <k, is="" p(k)="" td="" then="" true.<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>,</td><td></td><td></td><td>Ĭ</td><td></td><td></td><td> /</td><td></td><td><u>ی</u> ار</td><td><i>-</i> (1</td><td></td><td></td><td>-, \</td><td>1</td><td><u> </u></td><td></td><td></td><td>.,0</td><td>1</td><td></td><td></td><td>1</td><td></td><td>. , 1</td><td><u>ا</u> د</td><td></td><td>٠.</td><td>+</td><td></td><td></td><td></td><td></td><td></td></k,>								-		,			Ĭ			/		<u>ی</u> ار	<i>-</i> (1			-, \	1	<u> </u>			.,0	1			1		. , 1	<u>ا</u> د		٠.	+					
								(i)	i	s ·	trı	e	fc	or	a'	١	<u>ز</u> <	K	, 4	he	n	P	K)	is (tr	уe.																
Proposition 3.30 (well ordering Property): Every non-empty subset of IN has a least element.						Ĭ													_		Ĺ																					
	Prop	si	-io	n 3	3.3	30	C	νe	211	0	rd	er	in	g	Pr	OP	er	ły	():	Ev	er	y	nç	n-	en	npt	у	SU	ose	2†	Of	I	J Y	nas	a	le	a\$	+	ele	me	nt	
					-								<u> </u>			Ĺ						_					_				_				_	1	_			_	<u> </u>	_

Tr								rat																											
	Pr	oof	: If	12	is	rat	ior	nal,	+h	en	V 2	- <u>-</u> n	m	f	or	SD	me	, n	า,ท	<u>e IX</u>	1.														
	Si	nce	, 14	<√2	¹ <2	۱, ۱	n <	m	< 2r	n s	O	04	m	-n	<n< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></n<>																				
	Us	ing																																	
			21	n-r	<u>n</u> .	n	(2	n-r	<u>n)</u>		2n ²	² -m	<u>nn</u>	1	m²-	m	n	_ <u>r</u>	n(r	m-1	<u>n)</u>	_	m												
			n	n-1)	\ Y	าเท	n-r	((_ '	nlv	m-	n)		า(ท	n-r)	r	1 (n	n-r	1)		n												
	W	nic	h	is	sm	nall	er	th	an	m	n 1	buo	_ n	½'n	u	as	a:	Sυ	me	:d	to	be	si	mſ	dif	ie	<u> 1</u> . E	Z							
																								,											
De	in	itic	<u>m:</u>	Th	e 1	1et	ho	d o	f D)es	cer	1+	pri	ove	s f	P(n) t	or	all	n	EIN	l b	y	pro	vir	19	the	at	the	ere	is	n	5		
								fai					•										/			J									
Pro	PC	sit	ior	1 3	.32	: E	ver	y I	nat	υr	a١	ทบ	mł	oer	n	Ca	n 1	be	ex	pre	255	ed	ir	ех	ac	ŀly	on	е	wa	ıy	as	th	e		
								่ าบท																		-				1					
	Pr	oof	: 14	+	ne	cla	im	f	ails	s +	ner	n s	om	e l	ea.	s+	n	do	es i	no-	l h	ave	e a	ur	iat	e e	Suc	h	exp	res	ssic	n.	lf	n	
																																ad			
	D0	we	rc	4(2 +	_D n	/2	exi	ore	SSi	on	to	DI	bo	UC	2 0	m	n.	SO	1 ,	n i	S	a co	אטר	iter	· e	xar	ทุก	le.	the	en	n/2	15	5	
								m												_								1							

Chapter 6: Divisibility Definition: If a, b \ \ \ \ with b \ \ \ o , and a = mb for some integer m, then a is divisible by b, and b divides a (written bla) Definition: when bla, we call b a divisor or factor of a. <u>Definition:</u> A natural number, other than I, is prime if its only positive factors are itself and 1 4 0 and 1 are not prime. Factors/Factorization Definition: Integers a and b are relatively prime when they have no common factor greater than 1. Definition: when m and n are integers, the number mathb is an integer combination of a and b. Lemma 6.5: If a and b are relatively prime, then there exists integers m and n such that ma+hb=1. Proof: when late 161 or 6=0, the numbers are not relatively prime unless late1, in which (m, n) = (a, o). We may then assume |a| > 161. Multiplying by I does not change common factors, so we may assume a and b are non-negative. We now use strong induction we proved the base case of a+b=1. For the induction step, suppose a+b > 2. By symmetry, we may assume a>b. when 670, we apply the induction hypothesis to b and a-b. They are relatively prime and positive with sum less than atb. we obtain integers m' and n' where m'b+n'(a-b)=1, which is n'a+ (m'+n')b=1. Setting m=n' and n=m'-n' yields the desired combination. Proposition 6.6: If a and b are relatively prime and a divides 9b, then a divides 9. Proof: since a, b are relatively prime, Lemma 6.5, provides integers m,n such that 1=ma+nb. Thus q=maq+nbq=maq+mab. Since 9 divides each term on the right, it divides 9. 12 Proposition 6.7: If a prime p divides a product of k integers, then p divides at least one of the factors. Proof: Induction on K. when k=1, trivial. For k=2, let bi,..., be be k integers whose product is divisible by p and n= T bi. Thus p divides nbx If p divides by then the claim holds, otherwise, since p is prime, p and by are relatively prime, so by Proposition 6.6, p divides n. \(\big| \) Definition: A prime factorization of n expresses n as a product of powers of distinct primes, written as n= # pei

```
Definition: In a prime factorization, the exponent of each prime is its multiplicity
Example: The prime factorization of 1200=243 52.
Theorem 6.9 (Fundamental Theorem of Arithmetic): Every positive integer in has a prime
factorization, which is unique except for reorderings of the factors.
Corollary 6.10: If a,b are relatively prime and both divide n then abln.
Definition: Criven integers a, b (not both 0), the greatest common divisor, acd (a, b), is the
largest natural number that divides both a and b.
⇒ By convention, acd (0,0)=0
L> If d=gcd(a,b) =0, then a/d and b/d are relatively prime.
Theorem 6.12: The set of integer combinations of a and b is the set of multiples of gcd(a,b).
  Proof: Let d=gcd (a,b) and s={ra+sb: r,sezb be the set of integer combinations of a
  and b. Let T denote the set of multiples of d.
   SET:
  since d divides both a and b, there are integers k and I such that a=kd and b=ld.
  Then, ma+nb=mkd+nld=(mk+nl)d
   so d divides mathb.
   T$S:
  we express each das an integer combination of a and b.
   since of and by are relatively prime, then by Lemma 6.5 there exists integers m,n
   such that m(9d)+n(b/d)=1. Thus ma+nb=d and for KEZ, (mK)a+(nK)b=Kd \(\overline{L}\)
Euclidean Algorithm
<u>Definition:</u> An algorithm is a procedure for performing a computation or construction.
Proposition 6.13: If a,b,k are integers, then gcd (a,b) = gcd (a-kb,b).
  Proof: By the distributive law, every integer dividing a and b must also divide a-kb.
  Similarly, every integer dividing a-kb and b must also divide a. Thus d is a common
  divisor of a-kb and b. Hence gcd (a,b)=gcd (a-kb,b).
Proposition 6.14: If a and b are integers with b #0, then there is a unique integer pair K, r
such that a=kb+r and 0 < r < 161-1.
14 The process of obtaining K and r is the Division Algorithm.
4 The resulting r is the remainder of a under division by b.
  bris 0 if and only if a is divisible by b.
The Euclidean Algorithm
Input: A pair of non-negative integers, both not 0
Output: The greatest common divisor of the input pair
Initialization: Set the current pair as the input pair
Iteration: If one element of the current pair is 0, then report the other element as the
output and stop. Otherwise, replace the maximum element of the current pair with its
remainder upon division by the other element and repeat using this pair as the current
pair.
```

Examp	le:	Fir	nd	aco	d (1	154.	35	()																								
(154									4																							
(35,						(14			Ċ																							
(14,=						(7)																										
(7,0				•																												
Thus		is +	he	0.0	do	าหต	1 =	7= '	25-	2(1	4):	- 21	۲ <u>-</u> ′	2(1	54.	-41	2 F.))=	-20	154	1)+	91	25									
which																					7.	10	,55									
ooi iid	-111	5 1	110	1111	eg		COI	no	1110	1110	ווק	UF	TY		nig	1770	4 (קנזי	V)	٥.												
Theore	n (13	· A	חמ	liec	1 +7	i iv	nte	Men	- 2	ſſ	h)	mi	+h	۸>	hz	^	nn (1 0	±ſ	1 +	he	Fı	ıcli	del	าท	ΔΙΛ	nri	ithr	~ •	(A)	nrts
acd (a,									u																			,				
rields	010	PVC	VOC	cio	ן וטי	ν <u>ς</u>		1 (c	TIE	1111	or e r	20	LIN	h 1	5 11 11	1	M 6	30 n	n n	1111	7) 7)	ا با	3	ıcp.	SU	1 71	16	uit	1011	1171	1 1	
neius	uri	CAP	11 60	>31U	or i	OF (ycc	3 ((1,0,	, u	3 1	114	F7]	0 1	ıor	30	7716	, [1),[:	16 4												
xample	. T	ha	Θ Δι	201	رما	_ (~ Y -4	-15	,	20	ho	c v	10	201	الحداد	210	in	in	م ما	10 -) 6	CIV	ماه	^	201	نادر	on.		013	١٨	
																																-100
express										1110	TIC	ו (זכ	UT	(O)	un	ון ג	<i>و</i> ر	וטש	u	Ц.	30C	-11	CO	שווח	IY)C	אחנ)r15	u	re	m	רווט	pies
of gcd	۱: راها.	- עס	3	wn	ich	7	1 15	, r)(σ.																							
voncele		le a			11-	_ ,	ر ا ما			001	٠ 1,			r		ıc	1	י חנ)													
xample	· W	r)Q	T a	re	TN	6 I	r)†(۶Ä (er:	2011	UTI -	บทเ	S C)T (νλ† ,	ימו.	y = '	14 ?	. 1				1									
19 is 0	m	111	pre	DI -	r g	ca	Lb,	1b.	ک=ر م	30) ľ	nec	ore	m	6.	2	yu	ıraı	716	293	a	20	IUT	101)-							
irst re	du(e	me	ec	JUO	110	n	to	12X	1+5	y=	33					,															
etting	χ:	-2	ar	nd	y=	1, 1	ne	ge	+ '	۷(-	2)1	5(.1):	-1	, w	nic	in	we	r	ทบไ	mp	ly	10	ge	†							
x,y)=3											,		_	_																		
since 2	,5 (re	re	lat	ive	ly f	orir	me	,	S= 5	(-(6 +	5K	, 33	3-2	۲):	KE	Z 2	S													
																															<u>.</u>	
efiniti	<u>on:</u>	Ar	nea	qua	tio	n f	or	w	nic	hι	ne	se	ek	in	iteg	er	31	tulc	ior	ns	is	CC	ille	d		diph	nan	tir	ne	eq	uat	ion
ノリトカア			_																													
Jul 1 D	oar	<u>d</u>	Pro	<u>do</u>	len	<u>n</u>																										
heorer	n (Da	rtb	<u>00</u>	rd	Pro																										
heorer 1) at	m (Da -b	rtb ca	nn	rd ot	Pro be	w	rit	ter	n a	S	an	in	tec	qer	C	DM	bir	nat	ioi	h (+6	y								
Theorem	m (Da -b	rtb ca	nn	rd ot	Pro be	w	rit	ter	n a	S	an	in	tec	qer	C	DM	bir	nat	ioi	h (+ 6	y								
Theorem	m (Da -b	rtb ca	nn	rd ot	Pro be	w	rit	ter	n a	S	an	in	tec	qer	C	DM	bir	nat	ioi	h (+ 6	y								
heorer 1) at 2)1f	m ()-a N>	<u>Da</u> -b ab	rtb ca -a	<u>00</u> nn -b	rd ot th	Pro be en	. W N	rit = a	ter IX+	n a by	s (an or	in so	tec	ger e x	·ς,γ	om W	bir ith	nat X	ioi y²	n (O X		'	, X+	· b, .		X+	(a-	i)b		
heorer 1) at 2) If heorer	n (p-a N>	Da - b ab	rtb ca -a	nn nn -b	rd ot th	Probe en	N Ar	rit = a re	ter 1X+ reli	n a by ativ	s (f /el/	an or 1 P	in so rir	tec m ne	ger e x	·ς,γ	om W	bir ith	nat X	ioi y²	n (O X		'	, X+	· b ₁ .	,	X+	(a-	1)b		
heorer 1) at 2) If heorer	n (p-a N> n G	Da - b ab	rtb ca -a- : W re	noa nn -b her mo	rd ot the	Probe en l, b	N Ar S U	rit = a re upo	ter X+ rel n (by ativ	s (f /elv	an or / P on l	in so rir	tec m ne a.	ger e x an	.с. С, У	u xe	bir ith Z,	nat X Hhe	ioi yz e r	0 0 101	nb	ers	s x		Ļ		X+	(a-	l)b		
Theorem 1) at 2) If theorem 1) ave d 1) Proo	n (p-a N> n G istir	Da -b ab .21	rtb ca -a- : W re	nn -b her mo	rd ot the	Probe en l, b	N Ar s u	rit = a re upo nd	ter X+ rel n (n a by ativ divi	s (f rely isid	an or / P on l	in so rir oy +h	ne a.	ger e x an	ic i,y d	bm W XE	bir ith Z, ma	nat X Hhe	ioi yz z r	n (D nun	nb w	ers	s x	me	ear		X+	(a-	ı)b		
Theorem 1) at 2) If theorem 10 ave d Proof X+ it	m (p-a N> m & istin f: (Da -b ab .21 nct	rtb ca -a- : w re	nn -b her mo	rd ot the n o	Probe en l, b	AY S U ar = Q	rit = a re opo nd a+	ter X+ rel X+ r f	by ativition	s (f rely isid ha	an or y p on l or	in so rir oy th	ne a. e.	ger e x an sar	d ne ers	xe re	bir ith Z, ma	nat X Hhe	ioi yz z r	n (D nun	nb w	ers	s x	me	ear		X+	(a-	ı)b		
heorer 1) at 2) If heorer nave d Proo X+ it	m (o-a- N> m & istin f: So=K	Da -b ab 21 nct Sup a+	rtb ca -a- : W re ppo	noannn-bhermose	rd ot the n o nine X+	Probe en l, b den liberal	ar ar ar = 2	rit = a re opo nd a+ ion	ter X+ rel X+ r f	by ativition divition jb	s (rely isid ha	an or y p on l ve m	in so rir oy +h e	ne a. e.int	ger an sar (k	d neers	xe re a.	bir ith Z, m,	the	ion yz z r ude	n (D nun er,	nb w	ers ohio	s x ch ≤ a	m(ear	S					
Theorem 1) at 2) If Theorem 10 Ve d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+ x·	Probe en ib	ar ar ar ar ari	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (for the second seco	an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
heorer 1) at 2) If heorer ave d Proo X+ it	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar ar ari	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
heorer 1) at 2) If heorer ave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar ar ari	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
heorer 1) at 2) If heorer ave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar ar ari	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
heorer 1) at 2) If heorer ave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
heorer 1) at 2) If heorer ave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
Theorem 1) at 2) If Theorem 10 Ve d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
theorem 1) at 2) If theorem nave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
Theorem 1) at 2) If Theorem 10 Ve d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
theorem 1) at 2) If theorem nave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
theorem 1) at 2) If theorem nave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
theorem 1) at 2) If theorem nave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+ x·	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	
heorer 1) at 2) If heorer ave d Proo X+ it Subt	m (on No	Da -b ab .21 nct Sup a+	rtb ca -a- : W re poor	nn -b her mo se ind th	rd ot the n o ninc x+ x·	Probe en ib	ar ar ar = 2	rit = a po nd a+ ion	ter IX+ reli X+ r f	by ativition or give	s (f rely isic ha sc es t (an or on l ve om (i	ingso	ne a. e. int b=	ger an sar ege (k·	d ne ers ·l)	re k a. Si	bir ith Z, ma , e, r	the	ion yz r ide wit	n (D nun er, h	nb o:	ers onic	s x en eq	me -1.	ear ati	ns vel	У	prin	ne,	, a	

C	h	ap	+	2r	7	: 1	10	dı	olo)r	A	۱ri	iH)Y	ne	:+:	C																	
							-																											
Re	:la	<u> Fior</u>	<u>γs</u>																															
De	fir	\i+ic	าก	. /v(he.	n	2 0	nd	Т	are	29	0 	s. C	n	NO:	Hip	n	oet	14)4	PP	2.	Ωn	d 7	- i <i>:</i>	s n	.\$1	ub:	set	0.	t 4	he	Dr.	-0 d	vct
						OY										,,,		J.		2011		u.,			<i>-</i> 4							Ρ'		.001
						be																												
						ind					ng	R	be	? †	he	se	+ (of I	orc	len	bs	pa	irs	()	(, y)) ii	ი	χŢ	SI	JCr) +	ha	ŀχ	
na	S t	ake	en	q	CI (ass	-fr	ron	n >	<i>j</i> .																								
ΕX	nw	nole	<u> </u>	f (: 12	2	> 1'R	. 4	he	n -	Hhe	۵۱	m)h (26	f i	S (าก	ela	tio	n	nn.	112	1+	is ·	Hhe	2.5	₽‡	οf	Ord	ter	ed	D/	irs
						(x)			170		170	3	4,						0.4	.,,		J. 7				,		<u> </u>			-01		Pu	
				Ŀ.																														
						equ					lat	ior) c	n	a i	set	S	is	a r	rela	atic	าก	R	on	S	SU	ch	H	at	f	or (a11		
Ch						inc	+)	ζ,γ,	2 6	S									٥.					1										
		CX,				. (\	c c														Pro				,								
	(C)	(X)	Λ) (λ)	ヒス	Or	y nd (,X.)	2)(D	=>	(x	2) 6	: D									с , Р				y								
	<u></u>	(^,	ייק	S K	aı	iu \	٠ ۲٫	Z) (S K	_/	CNI	LI							шп	011	176	, ,	10		1 7									
ΕX	am	ple	:: 7	ne	ď	ivis	ibi	li+	y I	rela	atio	on	R	= { (m	n)	еħ	1 ² :	m	nz	is	re	e fle	exi	ve,	tr	an	sit	ive	, b	U†	ทอ	+	
						us																												
												•																						
						n			viv	ale	nce	Z Y	elc	Hio	n	on	S,	the	e s	et	40	el	em	en	ts	eq	viv	191	ent	+	D X	es	ίS	
Hn	e (equ	אענע	nei	nce	C	ias	S.																										
Cn	Y) (γυ	P.Y) C.E																														
)· <u> </u>																																
						a														and	y b	a	re	COI	ngi	rve	nt	m	100	lula	r		f	
(-)	ı is	s d'	ivi	sib	le	by	n.	We	2 W	rit	е	thi	S C	เร	ΧΞ	y (mo	od r	1)															
_	C:						. (-1							•		- 11 -	А	11- 0		اء	1											
эe	- IM	11+10	<u>on'</u>	· F(or	XΞY	y C	mc	og r	1),	tne	, n	UW	166	rr	1 13	s C	alle	.O .	tne	m	100	UIU	۵.										
ſh	edr	e.m	1 7	-16	: F	or	evi	P.YV	n	EIN	۱. C	ONI	nrı	IP.Y	ce.	m	odi	מונ	n	is	an	ec	יוטני	vale	en(.P.	re.l	oti	ממ	OI	n 7/			
						ive													-				1					-				•		
	Sy	m	me	tri	c:	11	XΞ	y (m	d ı							S	inc	e.	y->	(=-	(x-	-y)	Q	nd	n	(n	-m) i	fa	nd	or	ıly	if
						ΞX					. 1 .													_				_					-	
						nl																					me	ž ir	nte	ge	rs	q	,b.	
	AC	ICII	ng	th	es	e e	qu	an	ons	g	ıve	S	X-2	= (1M 1	br) =	LQ+	·b)	n	08	n	LΧ	- <i>モ)</i>	. [//	1								
)p	Fin	itir)n:	Tr)e.	equ	ivr	٦١٩	nc.	P, C	las:	SP.S	O-l	++	ne.	rel	at	on	"C	ON.	arı	en	CP.	m	Dd	חוט	n	" ^	n 7	Z 0	IPP.	th	9	
						ses																												n
		n 01								J															J									
_e																																s)(ı	mo	dn)
						Q =																										1-1	3 / :	
	m	re9	era	s K	1, L	. Ac	IGII	nq	th	ese	, e	que	ati	pns	У	161	US	u	10	F ()	(十人	-) n	+ (r+.	S)	un	a ·	mu	Z	u+l	pΞ(Lrt.	SJCr	nod
	M	ء ندا،	100	no	ىد	nesi		J. 1		0 -	h -	VA	n ²	. /	101	0	100	LV	· ·	ากฝ	الر		^	ا ما	_ ,_	(m	\d .	7	77				

		15), 79·23 = 12(mo	d 5). Since (2≡2(mod 5), we can	
reduce this to 79.23 = 2 (mod	5).			
<u>Definition</u> : A binary operatio				<u> </u>
			ng the sum of the congruence	
classes ā and b be the c				
			y letting the product of $ar{a}$ and	l
b be the class containing				
4 In notation, $\overline{a} + \overline{b} = \overline{a+b}$	and a · b = ab			
Example: For \mathbb{Z}_2 + 0		0 1		
0 0				
	0 1 0) I		
5.12				
Example: $79.23 = 4.3 = 12 =$	2(mod 5)			
1 7 - 7 - 10				
Lemma +.2+: It a and n are	relatively prim	ne integers, then	multiplication by a defines a	
bijection from 2n-103 to it	selt, Equivalenti	y, multiplication	by a permutes the non-zero	
congruence classes.				+
proof: Since a and n are r	elatively prime,	$0, a, 2a, \dots, (n-1)a$	all have different remainders	
modulo n. since o nas rei	nainder 0, the	others are non-z	ero. Since they are distinct, the	e
	+rom 2n-103 1	to itself. Since H	ne set is finite, the injection	
is a bijection. \square				
Definition: A five chan fin	O is a bileation	if for avery less t	Lhoro is overly, and v. A such	
that f(x)=6.	b is a objection	It for every be t	3, there is exactly one XEA such	1
THUT FCX)- B.				
Polinition: A function C: A-	R is injective	of fan each he R	, there is at most one XEA such	
that f(x)=b.	o is injective	IT TOP EUCH DE D	, THERE IS OF THOSE ONE XEA SOCH	-
THUI TCO-B.				+
Corollary 728: 15 a and n a	re relatively orig	ma integers the	n solutions to ax≡1 (mod n)	
exists and lie in a single co			7) SOLUTIONS TO UX = T CIT/OU II)	
→ in the language of In, the	class \overline{x} is the m	nultiplicative inve	erse of a	
in the language of zill, the	, Class X is the h	mornicative tive		
Applications				
7,50,70,70				
Theorem 730 (chinese pema	inder Theorem)	: If snit is a set	of r natural numbers that are	
pairwise relatively prime, and				
X= Qi (mod ni) has a unique			7,7,9 9,6.1,9.1,9,1,9.1,9.1,9.1	
Example: Suppose we seek x	such that $x \equiv 20$	$mod 5$), $X \equiv 4 (mod 5)$	d7), and x=3(mod9). This yields	5
N=315 and N ₁ , N ₂ , N ₃ =63,45,35				
i ai ni Ni	Ni (modni) yi			
1 2 5 63	3 2			
2 4 7 45	3 5			
3 3 9 35	-1 -1			
By the chinese Remainder T	neorem, we get	2.63.2+4.45.5	3.35.(-1)=1047. All numbers	
congruent to 1047 (mod 319				

<u>Cc</u>	rol	lar	y 7	.42	: W	Ihe	n f	o is	pr	im	ne, i	Ζp	- { (3	is	a g	roi	קנ	und	der	m	tlu	hpl	ica ⁻	HOI	n.									
10	100 1	00.0	7 //	2 ·	10	_ i		rcito		010	d (י בי	, ,	b a		2.	16	1000	4 0): Z	` ^	n d	00		r 0	- 1				0.5	0 -	-1/			
Le	Dr.	na Dof nen	• 1£	3·	= 1	را 14	o p		ne div	ar	05	λ61 Λ ² -	N, 1	(n+	1) -1)(2-1	110	1110	υρ	ו כי	- u	no	וזט	ıy ı	7 0	(=1	LM	00	D)	Ol	u=	-10	rric	מכ	עק
	W۱	nen	a	or	im	е.	div	ide	S	1 0	roc	luc	t, i	t r	אני אנו	s+	r. div	ide	2. C	ne	οf	+	ne.	fac	to	rs	80	D	div	ide	2.3	a+l	01	-	
	q.	-1 2	2	-									,															-							
Tr	100	rem	7	44	(N	lils	on'	s T	nec	re	(m	: (p-i)!=	-1	(m	σd	p)	for	·P	pr	im	e.												

Recall: When p and q are integers and q ≠ p, the quotient 9% is a real number. Such real numbers are called rational. The others are irrational. Rational Numbers/Geometry Definition: A fraction is an expression consisting of an integer, a division symbol, and a non-zero integer. For integers q, b, we write the fraction a non-zero integer. For integers q, b, we write the fraction of both and a non-zero integer. For integers q, b, we write the fraction of both and a non-zero integer. For integers q, b, we write the fraction of both and a non-zero integer. For integers q, b, we write the fraction of both and a non-zero integer. For integers q, b, we write the fraction of both and a non-zero integer and both and a non-zero integer and both an	Chapter	8:T	ne R	ation a l	Numb	pers			
Rational Numbers/Geometry Definition: A fraction is an expression consisting of an integer, a division symbol, and a non-zero integer. For integers a, b, we write the fraction a or %6 b or %6 Fractions %6 and %4 represent the same rational number if ad =bc. Definition: A fraction %b is in lowest terms if a and b have no common factors and boo b when the denominator is the smallest positive number among the denominators of all representatives of the same rational number. Proposition 8.11 Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a to) such that (x,y) EL if and only if (x,y): (at, bt) fron some real number t. Proposition 8.11 Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a to) such that (x,y) EL if and only if (x,y): (at, bt) fron some real number t. Proposition 8.11 Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a to) such that (x,y) EL if and only if (x,y): (at, bt) fron some real number t. Proposition 8.11 Every line Ax+By=0 for real numbers A, B not both 0. If B=0, the line is vertical without a rational slope. If B=0, then line is vertical without a rational slope. If B=0, then the slope is - 1% and we can write - 7% = 9% for integers a b. Now (x,y). It is not L if and only if bx-ay=0, which is (x,y)= (at, bt). [2] Definition: The unit circle is the set {cx,y>eR²: x²+y²=13}. Theorem 8.12 (Parametrization of the Unit Circle): If x ≠-1, then x²+y²=1 if and only if there is a real number t such that (x,y) = (1-t²=2 2t). Irrational Numbers Theorem 8.19: The positive integer k has no rational square root if k k is not the square of an integer. Proof: We use contradiction. Suppose x̄ is rational and that *M/n is a fraction representing it, where n is positive and minimal. If *M/n is not an integer, then there's an integer q such that *M/n is not an integer, then there's an integer positive denom	Recall: When	o and a	are in	ntegers and	a≠0, th	e auotient	P/q is a	real numb	er. Such real
Definition: A fraction is an expression consisting of an integer, a division symbol, and a non-zero integer. For integers a,b, we write the fraction a non-zero integer. For integers a,b, we write the fraction b non-zero integer. For integers a,b, we write the fraction a non-zero integer. For integers a,b, we write the fraction b non-zero integer for integers a,b, we write the fraction of a non-zero integer for integers a,b not both 0. If B=0, then the stope is -4/8 and we can write -4/8=9/6 for integers a,b. Now (x,y) lies on L if and only if bx-ay=0, which is (x,y)=(at,bt). Definition: The unit circle is the set £(x,y)=(a*,b*) if x*=1, then x*+y*=1 if and only if there is a real number t such that (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose IK is rational and that *\mathrm{\ma									
non-zero integer. For integers a,b, we write the fraction a hornerator b → denominator. Fractions % and % represent the same rational number if ad=bc. Definition: A fraction % is in 10west terms if a and b have no common factors and b?o. Is when the denominator is the smallest positive number among the denominators of all representatives of the same rational number. Proposition 8.11: Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a≠o) such that (x,y) ∈ L if and only if (x,y) = (at, bt) for some real number t. Proof: If (x,y) = (at, bt) then bx-ay = 0, which is a line through the origin with slope % a. Let L be the line Ax+8y=0 for real numbers A, B not both 0. If B=0, then the slope is -% and we can write -% = % for integers a,b. Now (x,y) lies on L if and only if bx-ay=0, which is (x,y) = (at, bt). Definition: The Unit circle is the set £(x,y) ∈ R²: x²-y²=i3. Theorem 8.12 (Parametrization of the Unit (xrete): If x≠-1, then x²+y²=1 if and only if there is a real number t such that (x,y) = (1+t²-2) + 1+t²=2. Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose √m is rational and that my is a fraction representing it, where n is positive and minimal. If my is not an integer, then there's an integer q such that my is not an integer, then there's an integer q such that my is not an integer, then there's an integer q such that my is not an integer, then there's an integer q such that my is not an integer, then there's an integer q such that my min-map. Since own-nq<0, we found a representation with a smaller positive denominator.	Rational Nu	mbers	s/Geo	metry					
Fractions % and % represent the same rational number if ad=bc. Definition: A fraction % is in Towest terms if a and b have no common factors and b to b. In when the denominator is the smallest positive number among the denominators of all representatives of the same rational number. Proposition 8.11: Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a+o) such that (x,y) & L if and only if (x,y) = (at, bt) for some real number t. Proposition 8.11: Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a+o) such that (x,y) & L if and only if (x,y) = (at, bt) for some real number t. Proposition 8.11: Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a+o) such that (x,y) & L if and only if (x,y) = (at, bt) for some real number to Ap and we can write -1/6 = 9/6 for integers a, b. Now (x,y) = (b B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the line is vertical without a rational slope. If B = b, the origin with slope is a slope is a slope is a slope is a slope								vision sym	bol, and a
Fractions % and % represent the same rational number if ad=bc. Definition: A fraction % is in lowest terms if a and b have no common factors and b to b when the denominator is the smallest positive number among the denominators of all representatives of the same rational number. Proposition 8.11: Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a,b) (with a to) such that (x,y) & L if and only if (x,y) = (at, bt) for some real number t. Proof: If (x,y) = (at, bt) then bx-ay =0, which is a line through the origin with slope b/a. Let L be the line Ax+By=0 for real numbers A, B not both 0. If B=0, the line is vertical without a rational slope. If 6 #0, then the slope is -1/8 and we can write -1/8 = 1/8 for integers a,b. Now (x,y) lies on L if and only if bx-ay=0, which is (x,y)=(at, bt). 2 Definition: The Unit circle is the set \(\frac{1}{2}(x)) \) \(\frac{1}{2}(x) \) \(\frac{1}{2	non-zero int	eger. F	or int	egers a,b,	we write \rightarrow non	e the fract nerator	ion		
Definition: A fraction $9/b$ is in Towest terms if a and b have no common factors and b>20 by when the denominator is the smallest positive number among the denominators of all representatives of the same rational number. Proposition 8.11 Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a,b) (with $a \neq 0$) such that $(x,y) \in L$ if and only if $(x,y) = (at,b+)$ for some real number b . Proposition 8.11 Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a,b) (with $a \neq 0$) such that $(x,y) \in L$ if and only if $(x,y) = (at,b+)$ for some real number b . Proposition 8.11 Every line L in R² that $(a,b) \in L$ in through the origin with slope $(a,b) \in L$ if $(a,b) \in L$ in a fine through the origin with slope $(a,b) \in L$ if $(a,b) \in L$ in a fine through the origin with slope $(a,b) \in L$ if $(a,b) \in L$ in a fine through the origin with slope $(a,b) \in L$ if $(a,b) \in L$ in a fine through the origin with slope $(a,b) \in L$ if $(a,b) \in L$ in an integer $(a,b) \in L$ in a fine through the origin with slope $(a,b) \in L$ if $(a,b) \in L$ if and only if $(a,b) \in L$ if $(a,b) \in L$ if and only if $(a,b) \in L$ if $(a,b) \in L$ if and only if $(a,b) \in L$ if $(a,b) \in L$ if and only if $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if there is a real number $(a,b) \in L$ if and only if $(a,b) \in L$ if and only if $(a,b) \in L$ if and only if $(a,b) \in L$ if and o		b	%ь	k	→ der	nominator			
by when the denominator is the smallest positive number among the denominators of all representatives of the same rational number. Proposition 8.11: Every line L in R2 that contains the origin and has rational slope is specified by an integer pair (a, b) (with a = 0) such that (x,y) \(\) \(\) \(\) L if and only if (x,y) = (at, bt) for some real number to the contains the origin and has rational slope is specified by an integer pair (a, b) (with a = 0) such that (x,y) \(\) \(\) L if and only if (x,y) = (at, bt) for some real number to the contains the origin with slope \(\) \	Fractions %	and 5	/a rep	resent the	same ra	tional numb	er if ad=	ьс.	
Proposition 8.11 Every line L in R² that contains the origin and has rational slope is specified by an integer pair (a, b) (with a±a) such that (x,y) \(\) L if and only if (x,y) = (at, bt) for some real number t. Proof: If (x,y) = (at, bt) then bx-ay = 0, which is a line through the origin with slope \(\frac{1}{2} \). Let L be the line \(\frac{1}{2} \) and we can write \(\frac{1}{2} \) by then line is vertical without a rational slope. If \(\frac{1}{2} \) b, then the slope is \(-\frac{1}{2} \) and we can write \(-\frac{1}{2} \) b for integers \(\frac{1}{2} \). Now \((x,y) \) lies on L if and only if bx-ay = 0, which is \((x,y) \) = \((at, bt) \). \(\frac{1}{2} \) Definition: The Unit circle is the set \(\frac{1}{2} \) (x/y) \(\frac{1}{2} \); \(\frac{1}{2} \)		fractio	on a/e	o is in lowe	st terms	s if a and	b have r	no commo	n factors and
specified by an integer pair (a,b) (with $a \neq 0$) such that $(x,y) \in L$ if and only if $(x,y) = (at,bt)$ for some real number b . Proof: If $(x,y) = (at,bt)$ then by $-ay = 0$, which is a line through the origin with slope $b \neq 0$. Let L be the line $Ax + By = 0$ for real numbers A , B not both $b \neq 0$. If $B \Rightarrow 0$, the line is vertical without a rational slope. If $B \Rightarrow 0$, then the slope is $-4/B$ and we can write $-4/B = 9/b$ for integers a,b . Now (x,y) lies on L if and only if $bx - ay = 0$, which is $(x,y) = (at,bt)$. Definition: The Unit circle is the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Theorem $B = (x,y) = (x,$							ber amor	ng the de	nominators of
specified by an integer pair (a,b) (with $a \neq 0$) such that $(x,y) \in L$ if and only if $(x,y) = (at,bt)$ for some real number b . Proof: If $(x,y) = (at,bt)$ then by $-ay = 0$, which is a line through the origin with slope $b \neq 0$. Let L be the line $Ax + By = 0$ for real numbers A , B not both $b \neq 0$. If $B \Rightarrow 0$, the line is vertical without a rational slope. If $B \Rightarrow 0$, then the slope is $-4/B$ and we can write $-4/B = 9/b$ for integers a,b . Now (x,y) lies on L if and only if $bx - ay = 0$, which is $(x,y) = (at,bt)$. Definition: The Unit circle is the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Theorem $B = (x,y) = (x,$	Proposition 8	.II: Eve	ry line	e L in R2 th	at conta	ins the ori	igin and	has ration	nal slope is
Proof: If $(x,y)=(at,bt)$ then $bx-ay=0$, which is a line through the origin with slope b a. Let L be the line $Ax+By=0$ for real numbers A,B not both D . If $B=D$, the line is vertical without a rational slope. If $B\neq D$, then the slope is $-A/B$ and we can write $-A/B=4/D$ for integers a,b . Now $(x,y)=1$ lies on L if and only if $bx-ay=0$, which is $(x,y)=(at,bt)$. Definition: The Unit circle is the set $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$. Theorem $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$. Theorem $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$. Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrotional Numbers. Theorem $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$. Theorem $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$. Theorem $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$. Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrotional Numbers. Theorem $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1\}$. Theorem $\{(x,y)\in \mathbb{R}^2: x^2+y^2=1$	specified by	an in	teger	pair (a,b)	(with a				
by a. Let L be the line $Ax + By = 0$ for real numbers A, B not both $A, By = 0$. If $B = 0$, the line is vertical without a rational slope. If $B \neq 0$, then the slope is $-4/B$ and we can write $-4/B = 9/B$ for integers A, B . Now (X, Y) lies on L if and only if $BX = ay = 0$, which is $(X, Y) = (at, bt)$. Definition: The unit circle is the set $\{(X, Y) \in \mathbb{R}^2 : X^2 + Y^2 = 1\}$. Theorem 8.12 (Parametrization of the Unit Circle): If $X \neq -1$, then $X^2 + Y^2 = 1$ if and only if there is a real number $X = 1$ to $X = 1$. The positive integer $X = 1$ to $X = 1$. The positive integer $X = 1$ to $X = 1$. The positive integer $X = 1$ has no rational square root if $X = 1$ is a rational number. Irrational Numbers Theorem 8.14: The positive integer $X = 1$ has no rational square root if $X = 1$ is not the square of an integer. Proof: We use contradiction. Suppose $X = 1$ is rational and that $X = 1$ is a fraction representing it, where $X = 1$ is positive and minimal. If $X = 1$ is not an integer, then there's an integer $X = 1$ such that $X = 1$ is not an integer, then there's an integer $X = 1$ such that $X = 1$ is not an integer, $X = 1$ is not the square of an integer $X = 1$ is not an integer, then there's an integer $X = 1$ such that $X = 1$ is not $X = 1$ in $X = $						ich is a lin	ne through	the Orio	in with slope.
If B=0, the line is vertical without a rational slope. If B≠0, then the slope is $-4/8$ and we can write $-4/8 = 9/6$ for integers a,b. Now (x,y) lies on L if and only if bx-ay=0, which is (x,y)=(at,bt). Definition: The Unit circle is the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ Theorem 8.12 (Parametrization of the Unit Circle): If $x \neq -1$, then $x^2 + y^2 = 1$ if and only if there is a real number t such that $(x,y) = (1+t^2-2t)$. Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose \sqrt{k} is rational and that \sqrt{k} is a fraction representing it, where n is positive and minimal. If \sqrt{k} is not an integer, then there's an integer q such that \sqrt{k} is not \sqrt{k} and \sqrt{k} is \sqrt{k} and \sqrt{k} integer \sqrt{k} is \sqrt{k} and \sqrt{k} integer \sqrt{k} is \sqrt{k} in \sqrt{k}									WIII. GOPO
lies on L if and only if bx-dy=0, which is $(x,y)=(at,bt)$. Definition: The unit circle is the set $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ Theorem 8.12 (Parametrization of the Unit Circle): If $x\neq -1$, then $x^2+y^2=1$ if and only if there is a real number t such that $(x,y)=\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)$ Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrotional Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose \sqrt{K} is rational and that \sqrt{K} is a fraction representing it, where n is positive and minimal. If \sqrt{K} is not an integer, then there's an integer q such that \sqrt{K} is not an integer, then there's an integer q such that \sqrt{K} is not \sqrt{K} is not \sqrt{K} in \sqrt{K} is not \sqrt{K} in	If B=0, the	line i	s verti	cal without	a ration	nal slope.			
Definition: The Unit circle is the set $\{(x,y) \in \mathbb{R}^2: x^2+y^2=1\}$. Theorem 8.12 (Parametrization of the Unit Circle): If $x \neq -1$, then $x^2+y^2=1$ if and only if there is a real number t such that $(x,y)=\left(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2}\right)$. Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose \sqrt{k} is rational and that \sqrt{k} is a fraction representing it, where k is positive and minimal. If \sqrt{k} is not an integer, then there's an integer k such that \sqrt{k} is not an integer, then there's an integer k such that \sqrt{k} is \sqrt{k} ince \sqrt{k} is \sqrt{k} is \sqrt{k} is \sqrt{k} ince \sqrt{k} ince \sqrt{k} ince \sqrt{k} is \sqrt{k} ince								integers o	1,b. Now (x,y)
Theorem 8.12 (Parametrization of the Unit Circle): If $x \neq -1$, then $x^2 + y^2 = 1$ if and only if there is a real number t such that $(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$. Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose \sqrt{k} is rational and that \sqrt{k} is a fraction representing it, where n is positive and minimal. If \sqrt{k} is not an integer, then there's an integer q such that \sqrt{k} is not \sqrt{k} in so \sqrt{k} in \sqrt{k} in \sqrt{k} in \sqrt{k} in \sqrt{k} is \sqrt{k} in \sqrt	lies on L	if ano	only 1	+ bx-ay =0,	which is	S(X,Y) = (a.	t, bt). 🔼		
Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose \sqrt{k} is rational and that \sqrt{m} is a fraction representing it, where n is positive and minimal. If \sqrt{m} is not an integer, then there's an integer q such that \sqrt{m} 1 $\sqrt{m} + 1 < q < \sqrt{m}$ so $\sqrt{m} + 1 < q$	Definition: Th	e Unit	circle	is the set s	(x,y) e 1R2	2: X2+Y2=13			
Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose \sqrt{k} is rational and that \sqrt{m} is a fraction representing it, where n is positive and minimal. If \sqrt{m} is not an integer, then there's an integer q such that \sqrt{m} 1 $\sqrt{m} + 1 < q < \sqrt{m}$ so $\sqrt{m} + 1 < q$	Theorem 8.12	(Paran	netriz/	ation of the	. Uni+ Cir	cle): If x≠-	I then x	2+ 12=1 if (1)	nd only if there
Further, such a point (x,y) has rational coordinates if and only if t is a rational number. Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose JK is rational and that M/n is a fraction representing it, where n is positive and minimal. If M/n is not an integer, then there's an integer q such that M/n -1 < q < M/n so 0 < m - nq < n. Since m - nq ≠ 0 m = m(m - nq) = m² - mnq = nK - mq n = n(m - nq) = n(m - nq) since 0 < m - nq < n, we found a representation with a smaller positive denominator							1, 171611 X	7 -1 11 41	is orny it incre
Irrational Numbers Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose TK is rational and that M/n is a fraction representing it, where n is positive and minimal. If M/n is not an integer, then there's an integer q such that M/n +1 < q < M/n so 0 < m - mq < n. Since m - nq ≠ 0 m m(m - nq) m²-mnq n(m - nq) m - nK - mq n n(m - nq) n(m - nq) m - nq Since 0 < m - nq < n, we found a representation with a smaller positive denominator				ω, γ)-(+ t2	, 1+t2/			
Theorem 8.14: The positive integer K has no rational square root if K is not the square of an integer. Proof: We use contradiction. Suppose \sqrt{k} is rational and that \sqrt{m} is a fraction representing it, where n is positive and minimal. If \sqrt{m} is not an integer, then there's an integer q such that \sqrt{m} is not \sqrt{m} so \sqrt{m} and \sqrt{m} so \sqrt{m} and \sqrt{m} so \sqrt{m} and \sqrt{m} since \sqrt{m} and \sqrt{m} integer \sqrt{m} and \sqrt{m} integer \sqrt{m} so \sqrt{m} and \sqrt{m} integer \sqrt{m} since \sqrt{m} and \sqrt{m} integer \sqrt{m} and \sqrt{m} integer \sqrt{m} integer \sqrt{m} and \sqrt{m} integer \sqrt{m} inte	Further, such	a poir	+ (x, y)) has ration	al coord	inates if an	nd only i	f tisaro	ational number.
integer. Proof: We use contradiction. Suppose Tk is rational and that m/n is a fraction representing it, where n is positive and minimal. If m/n is not an integer, then there's an integer q such that m/n-1 <q<m></q<m> m/n-1 <q<m></q<m> m/n so 0 <m-nq<n. 0="" 0<m-nq<n,="" a="" denominator<="" found="" m="" m(m-nq)="" m-nq="" m²-mnq="" n="" n(m-nq)="" positive="" representation="" since="" smaller="" td="" we="" with="" ≠=""><td><u>Irrational Nu</u></td><td>mbers</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td></m-nq<n.>	<u>Irrational Nu</u>	mbers	3						
Proof: We use contradiction. Suppose \sqrt{k} is rational and that \sqrt{m}/n is a fraction representing it, where n is positive and minimal. If \sqrt{m}/n is not an integer, then there's an integer q such that $\sqrt{m}/n - 1 < q < \sqrt{m}/n$ so $0 < m - nq < n$. Since $m - nq \neq 0$ $m = m(m - nq) = m^2 - mnq = n^2 k - mnq = nk - mq$ $n = m(m - nq) = n(m - nq) = n(m - nq)$ Since $0 < m - nq < n$, we found a representation with a smaller positive denominator		The po	sitive	integer K ho	ıs no rati	onal squar	e root if	K is not H	ne square of an
Suppose \sqrt{k} is rational and that \sqrt{m}/n is a fraction representing it, where n is positive and minimal. If \sqrt{m}/n is not an integer, then there's an integer q such that $\sqrt{m}/n - 1 < q < \sqrt{m}/n$ so $0 < m - nq < n$. Since $m - nq \neq 0$ $m = m(m - nq) = m^2 - mnq = n^2k - mnq = nk - mq$ $n = m(m - nq) = n(m - nq) = n(m - nq) = m - nq$ Since $0 < m - nq < n$, we found a representation with a smaller positive denominator		use co	ntradi	ction.					
$\frac{m'_{n}+1}{q \nmid m'_{n}} = 0$ Since $m-nq \neq 0$ $\frac{m}{m} = \frac{m(m-nq)}{n(m-nq)} = \frac{m^{2}-mnq}{n(m-nq)} = \frac{n^{2}k-mnq}{n-nq} = \frac{nk-mq}{m-nq}$ Since $0 < m-nq < n$, we found a representation with a smaller positive denominator	Suppose TK	is rat	ional	and that m	n is a	fraction re	epresentin	ng it, whe	ere n is positive
Since m-nq \neq 0	and minin	nal. If	m/n i	s not an in	teger, th	en there's	an integ	er q such	that
$\frac{m}{n} = \frac{m(m-nq)}{n(m-nq)} = \frac{m^2-mnq}{n(m-nq)} = \frac{n^2k-mnq}{n-nq} = \frac{nk-mq}{m-nq}$ Since $0 < m-nq < n$, we found a representation with a smaller positive denominator			0 0<1	m-nq <n.< td=""><td></td><td></td><td></td><td></td><td></td></n.<>					
since 0 <m-nq<n, a="" denominator<="" found="" positive="" representation="" smaller="" td="" we="" with=""><td>since m-1</td><td></td><td>n(m-n</td><td>a) m² m⁴</td><td>0 n²v</td><td>mno nv-</td><td>ma</td><td></td><td></td></m-nq<n,>	since m-1		n(m-n	a) m ² m ⁴	0 n ² v	mno nv-	ma		
since 0 <m-nq<n, a="" denominator<="" found="" positive="" representation="" smaller="" td="" we="" with=""><td></td><td>n</td><td>(m-ng</td><td>n(m-n)</td><td>1) n(m</td><td>-ng) m-</td><td>ng_</td><td></td><td></td></m-nq<n,>		n	(m-ng	n(m-n)	1) n(m	-ng) m-	ng_		
	since okm							positive	denomin ator
or a company of the first of the									

The	or	en	n 8	.16	(RO	atio	no	11 2	en	sc	The	on	em):	Le	+ 0	0,.	. , (n	be	int	ŀea	era	s u	vi+I	n n	2	an	d (Ço, (n∃	ŧO,	an	d
let				'n																		J												
			,	-0										. 1									D	,					_					
If r															ior	1 +1	(X)	= 0,	, W	rıt	ter) a	S 7	q.	ın	lou	jes	+ .	ter	ms	, ++	ner	ıρ)
							r) =								-																			
				n 5'.		in	n- i	- r			, ,	n_	n-1	ى م	من	n-	ι _	0 '	멁	C . 1	رن	n-1	-i											
				_			_	_	-	_	_	_	_	_	_	_	_	_																
3	Sin	ce.	9	di	vic	les	or	ne .	sid	e, i	it r	ทบร	st c	livi	de	th	e (oth	er.	Si	nce	q	ar	d	p (re	re	lat	vel	4 1	pri	me	(a	S
- 1	79		S	lou	es.	+ †	err														rly	, 1	or											
							_	Co	9 <u>n</u>	= \(\frac{5}{2} \)	C	P'	9"		P	<u>Z</u> (Ci 	-	2"	-6														
	So	P	di	ivi	des	С	. 0	1																										
		·																																
Exq	m	ple	: If	+ + tr	e e	equ	ati	on	X	3-6	=0	h	as	a :	rat	ior	al	SO	לט†	on	r,	W	riH	cn	9/0		the	n	9	mu	st	div	ride	ટ 1
and	Ιp	n	nus	st (jįvi	de	6	SC) 	ne	onl	Y 1	pos	sib	til id	ies	a	re	r=	±1,	± 2,	±3	, ± (, a	ınd	n	ne	u	vor	K.				
РуН	hα	۱0/	\ro	U V	Т	ric	105																											
<u>. y 11</u>		, 2,	<i>7</i> 1 C	141		• • •	,																											
The	or	em	1 8	.20	(P	ytt	ago	ore	an	The	ore	em):	fo	ı,b,	c (are	th	e l	enç)th	8 () 40	Hhe	S	de	s o	fc	ri	ghi	+	riaı	ngl	e
wit						•														•	4			_										
	_								,	0.11	12		2		ab/	`		^2			2	77												
				q						a+l	9) ⁻	F C	+ 4	1 (77:	2)	-)	a	+6	= (
				ь		c																												
					a		b																											
Def	ini	ıti	<u>on</u>	T	ne i	int	ege	r.	sol	υti	ons	s to	o a	2+1	o ² =	C2	ar	e c	all	ed	P	th	ag	ore	an	tr	iple	25.						
Cva	1001	ماہ	e ·	10	/1	6)	. (1	5 Y) 1	2 \ .	(>	16	17	\. <i>(</i>	'a. '	211	25	۸.	(25	2	1 2	0) ·	((и 1 /								
Exai	(11)	PIC	<u>ن</u> .	(5	, 7,	ار ت	, (:	ر رک	۱ , ۲	ן נפ	(0	ردار	, 17), \	T	27,	25	1	ركد) ₁	1, 2	۹۷,	((1, ٦	υ,	11)								
The	or	er	n :	8.2	2:	Th	e F) 	ha	qor	ea	nt	rip	les	a	re	th	e ii	nte	ge	r r	ทบ	ltip	les	0	+	rip	les	O	f t	he	fo	rm	า
(2r	s,	r2	-S²	r²	+ 5.	2)	or	(r	²- S	2, 2	rs,	r2+	S2.) u	one	re	r,	s c	re	ir	ite	ger	s.'											
	+																																	
	_																																	
									1		1				1		1	1							1							1 /		