Chapter 1: Numbers, Sets,and Functions

dratic Formula
Try fo Sove eguations x+y=S ,Xy=p.
We write y=s-x and Suvlstitute to get x(S-%)=p = X:5X+p=0. MulHply by a nonzero"a® +to get
ax>asx+ap=0 and Substitute b=-as and C=ap 1o oblain Ax*bx+C=0

0=a(*+2x)+c=a(x+ 2 x+ bi) Lo 2 +C = a(xe ey z+c—‘%

402
- b Y-Yac _ ~b *{*uac
7 (X+2q) " 4a2 AT 20

L when b*dac >0 there are Ywo values

> when bYac =0 there is one valve (two equal values)

L> when b%4ac <o +here is no real number solution
c,onver+mg back to the original variables, we get

-\- slqlp

L, Two valves when $*Y4pz20
L> No real soluHon when s*Hp <O
In ¥hese calcvlations, we vsed algebraic properties

Elementary Inequalities
(Assuming positive real numbers have positive square voots and the square of every real number
iS nonnegative)

Proposition 113 If 0<a<b then o*<ab<b? and 0¢ya <{b
Proot: MUH-lpI\/ 0<b by 0 0 ger 0*<ab Gnd by b 1o get [ab<b? s0/a%<abe b?
Assoming Nb<a, we get b<a which contraclics cuy assumption .|

Definition: | The ABSAGEEINAIOE of o real number x writen| Ix| is defined by
_V X | f XBO
[l )
=X [, f X200

Ly Think of  I1x) as the distance from x to O
L Note: x <Ix| and Ixyl=IxlIy

Progosition 1.3 (Triangle Inequality): If x and Y. are real numoers|, then Ix+yl<Ixl+ Iyl
Proof : Start Loikn |2xy<2Ixlly]. Adding x*+y? to both sides ond using 21=121% we get
X7 2xyry*4 X2+ 2lxiyl+y? 2 X+ 200y Iy)2
Using| Proposition 1.1, we take|the positive square iropt of both Sides 0 [get
X 2%y +y = (x+\/)1ﬁlx\2+2IxIlyI+|yI"= Qx4+ IyD* =] Ix+yl21x1+ Iyl 08 heeded

Definitions:

L The arithmetic mean ( or\avgragm of xland y is Xty
3 2

L> The (EBMEFREIMEAR of nonnegative numbers x and y is xy'
L The AGHMIIMEGUAIIEY stands for Arithmetc Mean- Geometric Mean |nequality and states that
the arithmetic mean of twp Nonnegative numbers is at least their geometric mean
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Definition: Sets A and B are €qUal), 1.e. A=B, if they have the same elements.

Definition: The EMPHISER, written @, is the unique set with no elements

Definition: A(PFOPEFISEBSER of 0 set A is O subset of A that is not A itself.

Definition : The POWIEEISED of 0 set A is +he set of all subsets of A

Note: The empty set is a Svbset of every set.

Example: Let $ e the set| 1 Kansas, kentuckyd and let T be +he set of states in the (US. that begin
with "kl $: T and S has 4 svisets: @ 1kansasy, {kentuckyd, Lkansas, kentuckyd. These 4 elements

are ihe elements of the powen set.

In order +0 specify 0 set consisting of elements in a set A satisfying a given condition, we write
{xe A: condition\)} and read “Hhe setof X in A such that X satisties condition’ "

To prove 4hat a Set T is the Set of solutions Yo a problem, we must prove that every Solution
belongs to T and that every member of T is a solution.

Example : Let S={X€MR:x%<x} and T2 IxeR} 0<x<)3 Gna prove S=T. Let xeT #hen x>0. Mukiply X<l by X
0 get X?< X SD Xe §. Let xeS. Since [x2dx we|get 07X™x=x(x-1) which means X ond X-1 are nonzero
with lopposite Signs so XeT as needed.

The Pen roblem

We are given a collection of pennies grovped into piles. We Create a new pile by taking one
penny from each existing pile. we consider different orderings of the same list of Sizes 1o
be equivalent. 1.e.1,3,5=3,1,5. We let S be the Set+ of lists that do not change.

Example

l

Let a be a list with N piles and b be the resulting new list. If aes, then a=b and b has n piles.
Since we introduce one new pile to b, one pile of a must disappear, meaning a has exactly
one pile of Size l. Since O=b, b has exacty one pile of size | +oo. Thismeans a must have
exactly one pile of size two. Letking ¢ be the Size of o pile we continue this reasoning for i
from | to n-L.

\f a has one pile of size i then b does too. So a has a pile of size (+),giving Us one pile of
each size from | fo n.

Let T e the Set of lists Consisting of one pile of each Size from | throvgh G natural number n.
we have already shown that SST sb now we need to show +that all elements of T vremain
unchanged (le. T<S).

Consider an element of T with piles of size 1,2,..,n. Foreach U from 2 1o n, the pile of size

L becormes L-1.The pile of size | disappears and the n piles contribute one ctoin o make a
pile of size n. Thus the resviting piles are the same as the Original and TEs. Sp S=T.



Definitons/ Notation:
L when a,beZ and asb, then ia..., bl denotes 10eZ:a<i<b)
L \when neN|, then Chl meons iI,...,n3
L §2k: keI is the set of even numbers
L 12k+1: ke 2] is the set|of| odd numbers|
L O is an even number. Every integer is either even or odd

Definition: | The @@F#P of anlinteger states whether it is even or odd.
L> "Even”and "odd" is only for discussing integers. |f we say a numker is positive without
specifying the system, we mean a positive real number.

Definition: When a,b &R with 0<b, the EIBSEAIIAERAD La,\) is the set {XeR:a<x<b]
Definition: When 0, &R with a<b, +he GPEANIATERED (0,b) is the set IXER:0<x<b)
Definition: Consider SER. \f an element x elonging to 8 is at least as large 0S every elemen+ of
S,+hen X (s the (AGKIRADID OF S.
L Minimum is defined analogously.

L> The open interval (a,l0) has no Max nor min

Definition: A €i§P with entries in A consists of elements of A in a specified order with repetition
allowed.

Definition: A®SHBPIE)is a |ist with K lentries.
L we write A* for the set of k-tuples with entries in A.

Definition: An GREEREANFAIP is a list with two entries.

Definition: The, CAFFESIBAIPFBADED o~ sets S and T, written SxT, isthe set £ (X,y): XeS,yeT3
L A2= AxA and A%= (k... Xe): Xoe A3

L Xi is read "X sub ("

L, Since (a,b) is used for ordered pairs, oft+en it is written “the interval (a,b) for open intervals

Definition: When S=T=1R, SxTlor R? is the set of all pointsin the plane designated by horizontal
and vertical coordinates called the (EHRFESGRICSERAIGTES of +he point.

The concept of cartesian products is Named after René Descartes (1596-1650)

Definition: Let A and B be sets. Their @RIBIH written AuB, consists| of all elements |in A or B.

Definition: Let A and| B be sets, Their (AFERSEEHBH, Lritten An B, consists of all elements in
both A and B.

Definition): Let /A ond B be sets. Their @iffErenee, A- B, consists of elements of A that are
not in B

Definition: Two sets are uisj]osh+ if [+heir intersection is| &



DefiniHon: If a set A is contained in Some Universe U, then the @OHplEment , A, of A is
the set| of elements of U notin A.

Example: Let £ and O denote the sets of even numbers and odd numbers. ENO=@& and
EVOEZ . Within Z,E€= 6

ven
Ina venn diagram, an outer box represents the universe under consideration and the regions
within the box correspond fo sets. Non-Overlapping regions correspond to disjoint sets.

AB

The venn diagmm was hamed for John venn (1834-1923) +hou9h he didnt invent them.

U

Functions

Definition: A §OREKIGIM, £, from a set A oo set B assigns 1o each aeA, o single element| £(0)
in B.

Definition: For a fonction f from A to B (written f:A— B), the set A is the @OMGIR.

Definition - The element f(a) in set B is called e ihnage of a/under f.The image of f with
domain ais 1§(a): aeA .

Definition: For F:A—B, the set B Is the Gaiged

A function f: A—B is defined on A and maps A info 8. e image of a function is

ontained in its +or9e,+. B
A
- . F —e +aroet
domain rTl\%—T (g image rge
e— 7

ways to describe g function

b list pairs (a,f(a))

L» provide a formvla for £(a) from a
L describe the rule in words

Definition: A function £:A—8 is GEIRAERINEED it the rules | defining 0Ssign to each
element of Al exacHy one element of B.

Definition: A function f is ¥ealsvalved if its image is a svbset of R
L> For real-valved fonchions £ and g, (fF+P0)=F)+900 and (FPLHO = FOIQ0)



..+ C

Nno deg

n ¢

eXP

D

S

f t

Mo ials

o

IS ¥

he

of

e QEGPA) of

(47

is bounded i s Mgl h that |
unbounded i h Mell such
function whose i

e is &8

e R

real n

ury

In
v

(dw)

reqasir

9




on A.
BN

unbovnded), increasi monotone increg
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Definition: A@IXEINPGInP 3 iS an eleme ch
L Every elemeny ident ixed point-.
L A functon . o R and only if - X, X

graph. .
® ®

Definition: & —B (inverselinage of y v ite
set IxeA: F(x)=y
Definition: For h:RxR—> [k (EVeINser of h with valve
Example: Let A(X,y .|Fo ine in M2 The are
whose Uhion
The Real N S
Detinition : @AXiGHAS a sh that real n ity
all_other properties arel dé
Definition:| A set ith operati distinguished O and
(FiBle it the follo field axi
Field Axiom
AD: X+YES © X-ye S
Al (xay)+2 =X+( L (XY)2=
A2: X+y=y+2 Xy Y-
A3:x+0D=x DX-1=2X
A4: given X, the : for X3 a wWe =
DL: X:(y+E)=XY 7
L+ is addiH It ne additivel identity element, 1 \s +he myltiplicative
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Example: Mulriply 548 by 602

548 (602)=(600-2)(600+2) 2600% 2% 3L0D00-4=35949 b

Example: Find al\l ab ¥or/set fav)ez?: a*br2a%

03b?20 = a(ab-2)70

Both factors must have the same sign SO erther

) a0 and| 22 oR 2) 0<0 and ab< 2
v l
all integer pairs 1n first quadrant excep+ | | all integer pairs wm Second quadrant

(2 and (2,1 and G0

Thus the answer is the lunion of Hhese.




%h‘lf\ r ’) 3 n .t >
ApTer £-LA TOOT.
Definition: A _ infwo variables x andly is an equation ax+byzr where the
coefficient a,o and the Constant r are| real numbers.
Definition: AWl in R? is the Set of pairs (x,y) satisfying a linear| equation whose
coefficient a and o are not both 2ero,
L —
X Ly'—?_ — %212\1
T /
— //
//' Y=N=17
N 7 o
There are three possibilities for two lines:
DThey intersect at one point —» ohe common Solution
2)They are parallel —no common Solutions
3)They are identical — infinitely many solutions
Theorem 2.2 Let ax+by=r and cx+dy=$ be linear equations in two variables X and y. |&
ad-bc * 0, then there is a unigue common solution. ¥ ad-be=0,en there is Nno common
Solution or there are infinitely mony depending on R and S.
Priook: If all four coefficients are zero, Hen there |is \No Solution unless r=s=Q in
which all ((x,y) are solutions,. Otherwise, at least one| coefficient is Non-zero. we may
assume d#0 by interchanging|the equations.
Solving for y| in the Second equation, we get
\ S"CX
1 d
we svbstitute this o get
(a-0SYyx+ 08 . v sinee GxtblSIEX )l gy+OSIOCX|_ oy  OS |BEX|_ (1) bCYy,bS _ |-
CalA [dlt T MIPN BT  e] [TTd [ da Y9/ d T
mMultiplying by d, we lget (ad-be)x+bs=rd
when Qd-bc+0, we divide 10 get
v -rd-bs
M lad-oc
which we svlstitute back in to|ge+
G{Td'DS\+ vz =3 = rilad-bc) - a(rd-bs) - asrre nigue—soluHoy
Cad-be ) 7 blad-bc) ad-bd -
when ad-bcz0, it becomes bszrd. If bs #rd them o solution! fbs=rd, then |Yhere are
infinitely Imany solstions of , \y. (V 3-<:x'>
' T e
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Universal (V) helpers Existental (3) helpers
for al), for every for some

W then there exists such that
whenever, for, given every, satisties at least one for which
any, a, arbitrary must, is some satisties
let be has a such that

Example: Consider the statement “If n is even, the n is the sum|of fwo odd numbers ’ Letting
E be the set of even integers and & be the set of 0dd, and letting P(n,x,y) be n=x+y".
The statement | becomes: | (Yne €)X,y € O) P(n, X, y)

Example: Consider the exercise 'Let a and b be real numbers. Prove that ax*bxza has a real
solution” This becomes | (Ya, beR)@XEMR)(AX*+bX=0). Wnen 0=0 => X=0| works for all b. when

a*0, then the quadratic formula | x= -b+{b¥4aZ  works.
240

Example: Compare  (¥xeA)(IYeBIPLxY) and (IYEB(YxeA)PUL,Y)

The second statement dlways implies the First. The fivst jis true if for edch x we can pick
0 y that works. The second is true if there Is a 'y that will always work regardless of
the choice of X.

1 LYX)PUA] 1S the same as (I)(PW)
A[@AXx) PL)] iS +he same as (V) Px))

Example: we (can vse notation for unbounded and bounded

L bounded: (3MeMRIYxeRDCIFOHIEM)
L 'unNbounded: (WMe RY(Axe ) (IFLHI>M)

Compound Statements

we can use connechves “and”,"or","if and only it and “implies” +o build compound statements

Name Symbol Meaning condition for truth
Negation P not P~ P false

Conjunction PAQ PandQ both true

Disjunction PvQ Por Q at legst one true
Biconditional| P<=>Q Pif and only it @ same truth value
Conditional P=Q Pimplies Q Q trve whenever P true

Definition: In the conditional statement P=>Q,P 18 the (YpPEHAESIS
Definition: \n the conditional statement P=>Q, Q is the ESHEDSIOR
Definition: The statement Q=P is the CORVERS® of P=Q

Definitipn: A listing of the truth valve computation for each choice |of truth valves|is a
+ruth table



P Q|6 WP (P)VvA [ (P22)=(Pva)
T T T F T T
T | F F F F T
FlT | 7 T T T
F F T T T T

Definition: An expression is called o §aBFGIBAY it its always true

A statement depending on two variables x,y needs both variables to be quantified. order
matters.

Definition: Two logical expressions XY are logically equivalent if they have the Same
troth valve for each assignment of +ruth valves of the variables

Two logically €quivalent statements are interchangable in a proof.

Example : For statements |P.Q , the following are equivalent:

) (PA@) Q2N e)

L) (PV Q) CPYVOR)

AN (P=>Q) PA(2Q)

d) P¢=Q w=2)~@=>P)
e)PvQ (\P)Y=Q
eP=Q CQ)= 6P

It P() and Q) are statements abovt element xe U, we often write (VxeU(PX) = QX))
as P)= QLX) or P=>Q

IF AzixeU: P is rued then PA=>QK) is (¥xeA)Q(x)
It B=1XeU: QLX) is +ruel then POO=>QX) iS A<R and Q)=P(X) iS BEA and P Q is A=B

XeAS (= not (Xe A) = Q2 (XEA)

XEALRB =) (xeA) or (xeB) = (xe A)VI(XeB)
XeAnB &= (xeA) and (xeB) (= (xe A)n(xeB)
ACB &= (VXEA(XER) {=> (Xe A) = (XeR)

Definition: The GATEFSECHOR of a collection of sets consists of all elements +hat belong to
all of the Sets.

Definjtion | The GRIBY of a collection of sets consists of all elements that belong to at least
one of the sets.

when x and y are numbers, then X=y is the Same as x<¢y and y<x. when A and @ are
Sets A=B is the same as A<B and BEA. For logical statements Pand @, P&<>Q means
P=2Q and @=>P

D(ANRY =ASUR™
D(ALB)=ACNBS



Elementary Proofs

rue and use mathematical reasoning to prove @ true

'lc =‘7"|P ~

me Pand 1@ and obtain a contradiction

Example:: If x and y are both odd integers, then xty is even.

Proof: Suppose x and y are |odd, then there exists integers [k, L Sucth that X=2k+l and

y=24+1, By properties of addition and tne distributive law:

XYF 20+ |42, | =12K+20+2 = 2(K+L+1)

This IS fwice agn infegev 50 it i3 even.

it its square is even.

Example: An in‘reger- is even if an

d
K| is even, then [n=2kK for la Ke
:Dr

y
. Z.
n*= (2K)*=Hk’=2(2k?)| so Hhe forward direcHon is| troe.
ot

To prove the reverse | we prove that if n*is even, so is n, We can| prove this via the
contrapositive method.
Let m be|an odd|integer \with m=2k+| for o kKeZ.

2

+

M2={(2k+ID* 3 42+l 3 2(2kl+k)+ | &

Example: There IS no langes+ real nuomber.

Yy
C
v
-

Aséume +hat| for all [xeR,IZeR SuCh that 22X If X:2+4l then Z222+) which is

(3 d
v

contradiction. &4




Definition: The set IN of GAFOFAIADMBEYS s the intersection of all Sets SSR that have H

following fwo properties:

a)1es

b) I\f Xe S,Hhen X+1€S

Theorem 2.6 (Principle of Induction): For each natural number n, let P(n) be a mathemat

stotement. If properties (a) Gnd (b) hold ,then for each neM the statement Pln) is true.
a) PCD) is frue

b) For KEN, if P(L) is true then P(r+D) is True

(4%

Proposition 3.3: For nNEN, b+ 24 +n= NN+
LT - 2
Proof: Since | 151- 32| PNJis frue. ASsume |P(Kk),then
Ply+D = Dy I/.A.I:K(K"'D_qu \\-Iv.._\\/K N - (k."")(l("‘z)
TV UKV ) T UK 11-\1.'”\2\-/— 2
& 4
Thus| P(n) nolds. A
Definition: A SEGUBAEE is a Function whose domain is N
3 indicates sommation | 2 riivL o PR I T R R S PO D TR
éar-bl‘\)l)” |} 'Ll OVCT 1) CS fTo L WIITIC - LU

Proposition 3.12: Suppose <a% and <b» are sequences of real humbers and that n €N

)W CeER,then 2., _ .3,
) AL LU0 o uy
L=1 L=\
b)1f ai<b; forall (e, then % a: b
o=l s
O ¥ 0£ac<b; for all (EM, Hhen fro. < flp;

P~
"

where T indicates multiplication products

Lemma 2.13: I XyER and nel, +hen| x™-y= -y X2y 4. +xy 2y

Corollary 3.H4 (The Gieometric Som): If geR,g#l and n is a non-negative integer, +hen
né-}l q = q"-1 -
(=0 q-
Proof: we bse Lemma 3113 |with [x=0 dnd| y=| to get
qr_l .:( -NC Pn—l + qv1-2+ BE: )

and divide by d-I.

Example: The NCAA bas¥etball tournament storts with 64 Yeams. How many qames are

pla\)e'd to get a champion?

Giame Nvmbers: 32—l 8 —4—2— |

+
Q

Total games: 1494

WMo
0
<
G




Proposition 2.16: 1f neN and g22 then n<g".
Proof: Use  induction

For n=, 1¢q |by definitHon of g

K+l A

"
N
>

IN
(=Y
~

Assume cloim holds for n [ then n<ql. Intl<n+n £Q-

Nle)
0
+9

A v
A

Proposition 3.9: If Xy,...,Xn Gre numbers in the interval Co, I
-?-' ( v\ > | 2‘ Y.
LR A N =EY"
L= L=
Proot: By linduction. B2

Corollary 3.20:1f D20a<1 and neN, then C1-a)"21-na.

\

Proot: This is proposition 3.19 with X,=...=Xn=0.

Proposition 3.21: For all neMN 1nH)

c -
I

e n

rpas
N
)
>
>
-r

oo
(o

Proof: By induction. &

Lemmq 3.23: If £ is a polynomial of degree d, +hen a is a zero of £ if and only if £x)=(x-a)n(X
for some polynomial h of degree d-I.
Proof: By definition of ja polynomial, srus S ls |y ¢ RN N o bl
7 ¥ X ) =[ZaC A wtTn a—T1or) l|c3 ILAAYLLARR*” (=1

and Cd#0. £ £X)=(x-a)h(x) |holds, Hhen £(a)=0.

Assuming F(a@) =D, then |Since £0)= Slalil b R
o) ! Uo T2 G wcriuve
L=)
d . 4 .
M \=prA\_era\=n A e STplr Ll AcNI— STl L L
TCX)T=TR) L) =Uo~Co™ Lot 'Lv/-.r‘lbbL\ =
LEI LE
and by Lemma 3.3 for| (2], x-0°z (x=a)hilO), where | ooy & yini Ji-
=1
Using Proposition 3.12a, factoring (x-a) gives f)=|(x-a)h(x),\where | (.~ ] g i)

Since each hi has degree |(-I, h is of dearee d-I.

Theorern 3.24: Every polynomial of degree d has at most d zeros.
Proof: Use induction with basjs step d=0 and inductive step d 21 4

)

Corollary 3.25: Two real polynomials are equal if and only if their corresponding Coefficients

are equal.

Priopt: Let #(x)=0 W) angd h=f-9 ,/then h(x)=0 and by Theorem |3.24, |it /must be the Zero

polynomial since it has |0 zeroes.

Strona Induction

Theorem 3.28 (Strong Induction Principle): Let IP(n):neIN?d be a sequence of imathematica)l

statements. 1f properties (a) and (b) below hold, then for every NEN , P(n) is +rue.

<

a) PO is true

b) For kz2 if P(L) iis +rve for all (<K  +hen P(k)is trve.

Proposition 3.30 (well ordering Property): Every non-empty subset of IN has a least element

-




eorem 331: {2 iS irrational

Proof: ¥ {2 is|rational, then {2="T/n for some mneN.

Since 142/<2, N<mM<Zn SO | 0¢M-n<n

uUsing 2n*=m3,
2n-m . n2p-m)|_ 2ntmn| . mAmn L mim-n) |_ m
m-n nim-m) Nim-n)| nim-n) | vm-n) N

which is |smaller|than| "/ but T/ was| assumed to be simplitied. &

Definition: The HIEHABANBIDESEER® proves P(n) for all NeN by proving that there is no
least n where P(n) Fails.

Proposition 3.32: Every hatural number n can be|expressed| in exactly one way as|the
product of an odd number and a power of 2
Proof: |¥ Hhe claim fails then Some least n [does not have a) bnigue |such expression.| I n
iS/odd, then 1:n {3 Al unigue | Such| expression. If n is even then lopk. at /2. we. lad

power OF 2 10 "/2 expression 1o produce an .80 if N is a counter example ,ten| "2 is
also ja_counter example, &
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Definition: In a prime factorization,|the exponent of each prime is its GAGIFIPNEH

Example: The prime factorization of 1200=2"3!5?

Theorem 04 CFundaimental Theorem of Arithmetic): Every positive integer n has a prime
factorization, which is bnique except for reorderings of the factors.

Corollary 6.10: If 0,b are relatively prime ond both divide n then ab|n.

Definition: Giiven integers a,b (not both D), the greatest common divisor, ged (o, b)), is the
largest hatvral number that | divides both 0 ond b.

L By Convention, gcd (0,0)=0

L If d=ged (a,b)*0, then Yd and 74 are relatively prime.

Theorem G.12: The set of integer combinations of a and b is the set of multiples of gcd(a,b).
Proof: Let d=0cd (9,b) and Stira+sh: M,;SeZ} be He set of| integen Combinations of ia
and b. |Let T denote |the set jof multiples of d.

SET!

Since| d |divides both @ and b, there are integers k and £ suth that a=kd and b=4d.
Then, ma+nb=mMkd+nld = (mkK+nl)d

S0 d|divides ma+nb.

TeS

We express| each| d as an integer |combingtion |of|a and b,

Since %4 and %4 lare relatively| prime, then by Lemma 6.5 | therg exists in+egers m,n
such| that | M (%d)* n(9/da) =1. Thus ma+tnb=d and for kez, (mk)a +(nK)b= kd!

Euclidean Algorithm

Definition: An GIGOFFAND is a procedure for performing  acomputation or| construction,

Proposition 6.13: If ,b,k are integers, then gcd (a,b)=9cd (a-kb, b).
Proof: By the distributivel lqw,every integer dividing la and b must also divide a-kb.
Similarly, |every integer dividing | 01kb and b|must also divide @. Thus |d Is o ¢ommon
divisor bf |a-kb and b. Hence| ged (a,b)=9ed (0-Kb, b).

Proposition 6.14: If|a and b are integers with b#0,then there is a unique integer pain K, r
Such that a=zkb+r and 0<r<lbl-I.
> The process of obtaining k and ris the Division Algorithm.
L The resuvlting r is the remainder of a under division by b.
L ris 0 if and only if a Is divisible by b.

The Ewclidean Algorithm

Input: A pair of non-negative integers, both not 0

Output: The greatest common divisor of the input pair

Initialization: Set the current pair as the input pair

Iteration: If one element of the corrent pair is 0,theh report the other element as the
ouvtput and stop. Otherwise, replace the maximum element of +he. current pair with its

remainder vpon division by +he other element and repeat using this pair 0s the cyurrent
Pair.



Example: Find ocd (154,35

(184,35) 154-4(39)=14

(35,14) 36-2(14)=F

(4,3 Y- 2(N=0

(7,0

Thys |7 is the gcd and F= 35-2(14)= 35-2(164-4(35))= -2(154) + A(35)

which is the integer combination of +the original inputs.

Theorem 6.1%: Applied 1o ih’reger-s (0,b) with 0zbzp and 0*0, the Euclidean Algorithm reports

2
gcd (0,b) as the output: Furthermore, reversing the substitution  steps of the algorithm

v . SR
yields an expression of gcd (a,0) a8 marnb for'some m,nez

Example: The equation bx+15y=739 has no Solution|in inl-eqer:s as such o Solution wovld

o

express 79 0S Gn integer combination of b and 15, but all such combinations are muyltples
of gcd (6,183=3 Wwhich 39 is not.

Example: what dre the integer solutions of bx+15y=997?

a9 {s a/multiple of ged (6,19)=3 SO Theorem .12 guara ntees a |solution

First reduce the equu '

SeHing X2 -2 and y=I, we get 2-2)+5(1D%) |, which we multiply 1o get

0

=, U

XY= 3362, 1) = (~blb,33)
f

Since 2,6 are relatvely prime|, $=1G6G+5K, 33-2k)1 ke 7}

Definition: An equation for which we seek integer solutions lis called a

Dartboard Problen

(8%
~r
N

Theorem (Dartboard Problem): For a,b relatively prime, a,bz

D ab-a-b cannot be written as an integer combination Qx+by

(44
>
< ~ T

N
DIf N>ab-a-b then N=ax+by for som: with xyz0D

Theorem @.21:When a,b are relatively prime and XEZ, the numbers X,x+b, ..., X+(a-Nb

< €

have distinct remainders vpon division by a.
Proo%: Suppose | x+lb and |X+) b [have |the $ame| remainder,|which means

X+Lb=|<a+}‘ and x+)bl=2a+r for| some mﬂegers K.2,r with |0sr<aqa-l
Subtracting [the equations gives |(i-)b=(k12)a

O
o

rime,| G

Since g divides (k-£Da, i+ must divide (i-))b. Since a and blare relativel
' L

[ @)

must divide|i-j and|since (/and j are hon-negative | integers less than a, |t




Relations

Definition: When S and T are sets, a @IGHBW etween Sland T is a svbset of +the product
SXT.| Alrelation on S is a | svlbset of SxS.

Example: Let|S be the set of students and T be the set of teachers. we define a reloHon
R between S and T by leHing R be the|set of ordered pairs (x,y) in $xT such that X

has taken a [class from V.

Example: \f £:R—> R, then the
LG ER?: y= OO

£ is a relation on|IR. I+ is the set of ordered pairs

do
S
©
by
o
ﬁ

Definition: An@quivalencelFelariBm on 0 Set S lis a relation |R on S| such that for all

Choices of djstinct Xy,z€$S

Q) (\X)ER Reflexive Property
b)(xy)eR = (yX)eR Symmetric Property
A,y eR and (y,2)eR = (XZ)ER Transitive Property

Example: The divisibility relation R=1(m,n)em?: m|n3 is reflexive, transitive, vt not

symmetric. Thos it IS not an equivalence, relation,

7

&
%

Definition: Giiven Qn lequivalence velation on S, + elements|equivglent 1o Xes (S

C ngruen

~<
o

re. Congvent! Modulo n 1f

Definition: Given a natvral number n, the integers X an
X-y_is divisible by n./We write this as x=y Umod n)

Definition: For X=y (mod n), +he number n is called the @odOIES.

Tneorem #.16: For every NEN, Congruence modvlo M is an equivalence relation on Z.
Proofi: Reflexive: Xx-x=0| is|divisible by n

) ifandonly |if

3

Symmetric : [IF x=y (mod n) [+hen n|k-y) | Sinde N-X=-(xry) and| n|(n

n|m |, Hhen y=x[(mod/ n).

(1]
[}
S
+
O
s

some in‘regers a,b.

Transitive: 1| nl(x-y) [and nl(y-2) Fhen| xry=an and y-=
S

Adding [these equations gives X-z=an+bn = (arb)n |so n|(x-z) A

Definition: The equivalence classes of +he velation “congruence modulo n"on Z are the
Or Congruence classes modulo n. The set of congruence classes s wriHen

as Zn or Z/nz.

(mod n) then a+bz (r+s)(mod n) and a-b=(r-s)(modn)
s(mod n) then a=kn+r and b=4ntS| for som

Lemma #.19: 1f azv(modn) and ©
Proof: Since a=vr(modn) and b

=

integers K 4. Adding |+hes ions _yields | arbF (k+2)n+ (r+8) |ond thus O+b = (r+5)(mod n)

)
(@]
<
S = i
p:r w

Multiplying| these gives a-b=|kdn*+ (ksxer)ntrs and +hus arb = rrs (mod n)




Example: Since #a=4(mod 5) ond 23= 3(mod 6) F4:23=12(mod 5). Since [222(mod 5), we can
reduce +his 1o #9:23= 2(moed 9).

Definition: A GIAGEVIGPEXATIOH on o set S is g function from SxS 1o §,

1> On Zn, addition is the binary operation defined by letting the sum of the Congruence
Classes 6 and b be e class containing the integer a+b.

> On Zn, multiplication is the binary operation defined by letting the product of a and
b be the class containing the inner a-b
L In notation, G+ b= 0+b and a-b= ab

Example: For Z» +|0 | .
OO | (o)
1110 ]

Example: #9-23=4:3=12 =2(mod 5)

O 0|0

|
O
|

Lemma #.23: If 0 and n are relatively prime integers, then multiplication by a defines a
bijection from Zn-10} to itself; Equivalently, multiplication by o permutes +he non-zero
congruence classes.
Proof: Since @ and i arel relatively prime, 0,4, 20,..-,(n-Daj all have different remainders
modulo n. Since| 0has remainder 0, the others|are non-zerp. Sinte they are distinct, the
list defines an |injection from| Zn- 0% 1o itself. Since| the set is finite, +he|injection
iS|a bijection.

Definition: A function| £:A— B is o GIjEEKBA if for every lbe B, there lis exactly one Xe Al such
that [F0=b.

Definition: A function £:A—B is GRJECHVE \f for each be B,there is at mpst one xe A Such
that £00=b.

Corollary #.23: |f aand n are relatively prime integers, then solutions o ax=10mod n)
exists and lie in a single congruence class.
L> In the language of Zn, the closs X is the multiplicative inverse of a.

Applications

Theorem 730 (Chinese Remainder Theorem): If £nik is a se+ of r natvral numbers +hat are
pairwise relatively prime, and 1ai3 are any r integers then the system of Congruences
X2 0a¢ Umod nY) has a Unique Solution N=Trnc.

Example: Suppose we seek X Such that X=2(mod 5), X=4(mod ), and x=3(moed Q). This yields
N=315 and N, N2, Na= 63,45,35.
i ad [ ne| Ne |[INg(modnd| Ye

112 |5 |63 3 2
24 | + 145 3 5
31319 |35 - -

By the Chinese Remainder Theorem, we get 2:63+2+4-46-5 +3-35:(-=104F Al numbers
cOngruen+ 1o 1043 (mod 319) are Solvtions, the Smallest being 102|043 -3+ 3]5.



we form loops for a by calcvlating ax

Example: Fora=5 and p=13
r x=0 C)
(o
For x=1
1=l (mod 13) 12 . 3
1-52 5(mod 1) i
5:5=a5= 12(mod 13) 1 /
12:53 0= 8 (mod 13) il
8-5=40z= I(mod 13) S [T T
For x=2 For x=4
222(mod 13) Op— ! 4=Y4(mod I3) jf S
2:5=10(mod 13) 4.5=20= #(mod 12)
10:5=50= 11(mod 13) [ 3-5:25= q(mod 12) !
1-5=155= 3(med| 13) «—b 9-5=45=z 6 (mod 13) o
3+5=1562 2(mod 1) 2 3 65230z 4(mod 13) 1 fo
Definition: When |Some power| of a is| congruent: to |(mod p), +he GFEED of g (in Zp) is
"4

the least k such that 0¥ 21 (mod p)

uppose. 0% O (mod p). For xeZp, let Sx=1x,xa,x0%...5. There
X¥0, the set+ Sx consists of exacty ¥ el ments.

Lemma #.34: Let p e prime and
iS o positive integer k such tat

- n
O
-1
=]

xa (mod

—-ol
—h

or

Lemma 7.35: If R is the relation on Zp defined by (x,y)eR if and only if Y
Some non-negative integer j,en R is an equivalence relation.
Proof; Since X=Xa°Cmod|p), R lis retlexive.

Let K| be the order| of alin|Zp. When Y= Xad(modp), we may assume 0<¢)<k-1/ I y3xai(mod p)
hen | x2ya*3 (imbd p) $o Symmetric | I y2xa”(modp) and 2=xa$(modp), then Z=xa™}(mod p)
S0 transitive. |2

-

= I
m

Theorem 7.36 (Fermat's Liktle Theorem): If p is prime and q is not a multiple
af'=| (modp)

(4%
(o)
-

©
+

NEN

30, 12

m

m
]
w
n

238 (mod 31]

Example: 1102= 113920 % = (u=s)*° 1

Corollary #.39: If p iS prime and aeZ then 0°=a(mod p)

Definition: A GEBDP is a set & together with a binary operation ° on & satistying the
following properties )
DTnere is an element lee G such that for every Xel, xee=X=€eX. This element S the
identity element.
DFor every xe@, there is an element

3 For ever 266 (xey)oZ=go(yo?2

A
-1+ + ‘

—'—

>

eG Such that Xey=e=y=x.Yis the inverse of X.

<L
>
L




Corollary #.42: When p is prime, Zp-103 is a gro

TO

nder Mmulhplicati

Lemma F.43: If p is prime and AeN, then a*=1(mod p) it and only if a=1lmod p) or a=-1(mod
Proof: \f 0%= 1, then| p (divides |0* 1= (a#I)Q-
when alprime divides a product, it must divide one of the factors so p divides a+l or
a- @

Theorem %44 (wilspn's Theorem): (p-N'= -I(mpd p) for p prime.




Chapter 8:The Rational Numbers

Recoll: When pandg are integers and g#0, the quotient 74 is a real humber. Such req|
Numboers are called rational. The others are irrational.

rs metr

Definition: A @FAEEDBH is an expression consisting of an in+e9er, a dwision symbol, and. a
non-zero in’reger. For in’regers a,'o, we write the fraction

a or (}/ i_>|“\>l“§lr0l9r1

b o b —> dehominator

Frachions % and 7d represent the same vational number if ad=bc.

Definition: A fraction Y is in (GESEHEFM® if o and b have no .common fachors and
b?0

L when the denominator is the Smallest positive number among the denominators of
all representatives of the same rational number.

Proposition 8.11: Every line L in R* tha+ contains the origin and has rational slope is
Specified by an integer pair (a,0) (with a#0) such that (,Y)EL if and only if
(x,y)= (at, bt) for some real number +.
Proot: If (x,yD= (at,bt) then| bx-ay=0, which i$ a line through the ovigin with| slope
Y. Let Libe the ling Ax+ By=0 for|real humbers A,B|not both 0.
If B=0, the line|is |vertical| withbut a rational Slope.
\f |B#0,/then/the slope is FAB and we (can write “AMe=%Yo for infegers a,b. Now |(x,y)
ligs on|L if and only it bx-ay 70, which is (x,y) = (at,bb).

Definition: The GATEIGIFEI® s the se+ 10x,y)eR?: x%y2=13

Theorem 8.12 (Parametrization of the Unit Circle) * If X#-1, then x*y*=I if and only if there
IS a rea| number & Such that ¥ =( -t | 2%

l+t? , 1+
Forther, such a point (x,y) has rational coordinatts if and only if t isa rafional number.

Irratipnal Numbers

Theorem §.19: The positive integer K has no rational Square root it K iS not the square of an
\'ni—eger.
Proofi: We luse contradichion.
Suppose, {k is rationq) and that "Vl is al fraction representing |it| where |n jis |positive
and minimal. ¥ "/n| IS not lan integer, then there's an iinteger g such that
" 11 <9 ¢ "/n |S00<m-ngen.
Since mM-nq#0
m _mmrng) L m*imng, | n*k-mng _|nkK-mg
N |[nlm-nq) | N(m-ng) | ntm-nq) | m-ng
Since ocmM-ng<n, we found| a|representation |with a smaller positive denomin ator
S0 if the Square voot| of K lis rationa), it must be an|inteder.




Hen as

A\

nce

A\ o

rly,

agore(
J

of

U

2)

K rl-eqcn -

NN
o)

O

(4Y)

©

Hen 0

,29);




