Math 134 Spring 2018 Krystin Manguba-Glover Classwork 2

Name: _____

Work on as many problems as you can together with your group members. Towards the end of lecture your group will be asked to present a problem correctly to receive classwork points.

1. Evaluate each exponential expression.

(a)
$$6^2 \cdot 2^4$$
 (e) 2^{-5}
(b) -3^3 (f) $2^2 \cdot 2^5$
(c) $(-5)^2$ (g) $7^2 \cdot 7^{-3}$
(d) 6^0 (h) $\frac{3^4}{3^7}$

2. Simplify each exponential expression.

(a)
$$x^{-3}y$$
 (e) $(3x)^3$

(b)
$$x^3 \cdot x^2$$
 (f) $(8x^3)^2$

(c)
$$x^{-4}y$$

(d) $\frac{x^{36}}{x^{29}}$ (g) $\left(-\frac{2}{x}\right)^2$

3. Simplify each exponential expression.

(a)
$$(-6x^{3}y)(-2x^{5}y^{2})$$

(b) $\left(\frac{x^{-2}y^{8}}{x^{-4}y^{12}}\right)^{-2}$
(c) $\left(\frac{-10a^{13}b^{6}}{30a^{18}b^{-3}}\right)^{2}$
(d) $\left(\frac{30x^{26}y^{45}}{41x^{-32}y}\right)^{0}$

4. Evaluate each expression, or indicate that the root is not a real number.

(a)
$$\sqrt{25} - \sqrt{4}$$

(b) $\sqrt{25 - 4}$
(c) $\sqrt{(-6)^2}$

(d)
$$\sqrt{-25}$$

5. Use the product rule to simply each expression.

(a)
$$\sqrt{45x^3}$$

(b) $\sqrt{3x^2} \cdot \sqrt{6x}$
(c) $\sqrt{125y^2x} \cdot 10x^2$

_

6. Use the quotient rule to simplify the expressions. Assume x > 0.

(a)
$$\frac{\sqrt{3x^3}}{\sqrt{48x}}$$

(b) $\frac{\sqrt{24x^4}}{\sqrt{4x^2}}$
(c) $\sqrt{\frac{121}{9}}$

- 7. Add or subtract terms whenever possible.
 - (a) $6\sqrt{3} 14\sqrt{3}$

(b)
$$3\sqrt{5x} + 2\sqrt{5x} - 4\sqrt{5}$$

- (c) $2\sqrt{54} 3\sqrt{24} + \sqrt{96} 5\sqrt{63}$
- 8. Rationalize the denominator.

(a)
$$\frac{1}{\sqrt{7}}$$

(b) $\frac{\sqrt{3}}{\sqrt{5}}$
(c) $\frac{3}{3+\sqrt{5}}$

- 9. Evaluate each expression.
 - (a) $8^{1/3}$
 - (b) $16^{-5/2}$
 - (c) $125^{2/3}$
- 10. Simplify the following expressions.

(a)
$$(7x^{1/3})(2x^{1/5})$$

(b) $(y^{1/3})^6$
(c) $\frac{(2x^{1/4})^5}{x^{3/8}}$
(d) $\sqrt[3]{9} \cdot \sqrt[3]{6}$
(e) $\frac{\sqrt[5]{64x^6}}{\sqrt[5]{2x}}$
(f) $\sqrt[3]{x^5}$