Name: _____

Show all work and circle/box your final answer. All answers must be simplified unless stated otherwise.

- (1) Consider the function $f(x, y) = x^2 + 2y^2 + 2xy + 2x + 4y + 7$.
 - (a) Find the critical points of f(x, y).
 - (b) Compute the number D(x, y), and evaluate D at each critical point from part (a).
 - (c) Classify each critical point, using your answers to (a) and (b), as a maximum, minimum, saddle point, or that the test is inconclusive.
- (2) Consider the function $g(x,y) = -x^2 y^2 + 3x 2y$.
 - (a) Find the critical points of g(x, y).
 - (b) Compute the number D(x, y), and evaluate D at each critical point from part (a).
 - (c) Classify each critical point, using your answers to (a) and (b), as a maximum, minimum, saddle point, or that the test is inconclusive.
- (3) Let $f(x,y) = x^2 + 4x y^2 2y + 2$
 - (a) Find the critical points for f(x, y).
 - (b) Use the second derivative test to determine whether the critical points from part (a) are maxima, minima, or saddles.
- (4) Suppose you have the function of two variables $f(x,y) = x^4 12x^2 4xy y^2 + 16$.
 - (a) Find the first partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
 - (b) Find all three second partial derivatives $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, and $\frac{\partial^2 f}{\partial x \partial y}$
 - (c) Find and classify all critical points of the function using the second derivative test for functions of two variables.