$Midterm\ 2-Math\ 203$

Tuesday, April 2, 2019

This is a closed-book exam.
You are allowed one cheat sheet (8.5 inch by 11 inch 2-sided)
Non-graphing calculators allowed.
Justify your answers to obtain full credit (and partial credit, too).
You have 75 minutes.
This exam consists of 7 questions.
Please verify that you have all pages.

Name:		

ID#:_____

(this page intentionally left blank)

1. (15 points) You sell a total of 20 crates of ice cream each month. Storing the ice cream \$ per crate (based on the average number of crates). To make a new order of crates costs \$5 per order. Let x represent the number of ice cream crates in each order and r represent the number of orders.

- (a) Find a function for the total inventory cost (carrying cost + ordering costs) associated with ordering and storing the crates of ice cream.
- (b) Find the amount of crates per order you should make to minimize the inventory cost. How many orders per month is that?

2. (10 points) A spherical snowball is placed in the sun. The sun melts the snowball so that its volume decreases 16π inches per hour. Find the rate of change of the volume with respect to time at the instant the radius is 4 inches.

The volume of a sphere is $V = \frac{4}{3}\pi r^3$.

3. (20 points) Evaluate the following integrals. (Don't forget +C when necessary!)

(a)
$$\int (e^{17x} + x^{3/4}) dx$$

(b) $\int_{1}^{e} (9x^{2} + x^{-1}) dx$ (Recall: $\ln(e) = 1$ and $\ln 1 = 0$.)
(c) $\int_{1}^{16} \frac{1}{\sqrt{x}} dx$

(d)
$$\int \left(7x + 4x^3 + \frac{1}{x^3}\right) dx$$

4. (20 points) Find $\frac{dy}{dx}$ for the following functions. You do not have to simplify your answer.

- (a) $y = \ln(4x^2 + 5x)$
- (b) $y = 2x^3 e^x$ (c) $y = e^{4x^4 + 7x^2 + 4}$

(d)
$$y = \frac{\ln x}{4e^x + x^2}$$

5. (10 points) Use logarithmic differentiation to find the derivative of $y = \frac{(x+1)^5(2x^3+5)^3}{\sqrt{2x+4}}$. You do not need to simplify your answer. 6. (15 points) An ecologist is conducting a research project on breeding pheasants in captivity. She first must construct suitable pens. She wants a rectangular area with two additional fences across its width, as shown in the sketch. Find the **dimensions** of the pen that has the maximum area she can enclose with 2400 m of fencing.

7. (10 points) Find an equation of the line tangent to $x^2y + y^4 = 4 + 2x$ at (-1, 1)

Final Score

	Score	Out of
Question 1		15
Question 2		10
Question 3		20
Question 4		20
Question 5		10
Question 6		15
Question 7		10
Total		100