Show all work and circle/box your final answer. All answers must be simplified unless stated otherwise.

1. Find the following limits:

(a)
$$\lim_{x \to 0} \frac{\sin(4y)}{7y}$$

(e)
$$\lim_{x \to \infty} \frac{x^2 - 5x - 9}{2x^4 + 3x^3}$$

(b)
$$\lim_{x\to 0} \frac{\tan x}{x}$$
 (Hint: Rewrite $\tan x$ first)
(c) $\lim_{x\to \infty} \frac{x^2 + 8}{6x^2 - x}$

(f)
$$\lim_{t \to 2^{-}} \frac{t+2}{t-2}$$

(c)
$$\lim_{x \to \infty} \frac{x^2 + 8}{6x^2 - x}$$

(d)
$$\lim_{x \to \infty} \frac{5x^3 + 7x - 8}{-4x^2 - 2x + 1}$$

(g)
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2}$$

2. Find
$$\lim \frac{1}{x^2 - 4}$$
 as

(a)
$$x \to 2^+$$

(b)
$$x \to 2^{-}$$

(c)
$$x \to -2^+$$

(d)
$$x \rightarrow -2^-$$

3. It can be shown that the inequalities

$$1 - \frac{x^2}{6} < \frac{x \sin x}{2 - 2\cos x} < 1$$

hold for all values of x close to zero. What, if anything, does this tell you about

$$\lim_{x \to 0} \frac{x \sin x}{2 - 2 \cos x}?$$

Give reasons for your answer.

- 4. Use the squeeze theorem to find $\lim_{x\to\infty} \frac{\sin 3x}{x}$.
- 5. On what interval(s) is the following function continuous?

$$f(x) = \begin{cases} \frac{x-6}{x-3} & x < 0 \\ 2 & x = 0 \\ \sqrt{4+x^2} & x > 0 \end{cases}$$

6. Is f(x) continuous at x = 1 if $f(x) = \begin{cases} 8x - 3 & x \le 1 \\ 4x^2 + 5 & x > 1 \end{cases}$? If not, is it continuous from the left, right, or neither?