
The following are true statements involving chapters 2 and 3. Prove these statements by
working through the problem and showing all necessary steps.

(1) lim
t→0

(
1

t
√

1 + t
−

1

t
) = −

1

2

(2) g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4−x2

2+x x < 1

1 x = 1

2 − x2 1 < x ≤ 2

x − 3 x > 2

is continuous at x = 1 but not at x = 2

(3)
√
x − 5 =

1

x + 3
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(5) The equation of the line tangent to y = 3 + 4x2 − 2x3 at x = 1 is y = 2x + 3 and can be
found using the limit definition of a derivative.
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(10) H(θ) = θ sin θ⇒H ′′(θ) = 2 cos θ − θ sin θ
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(13) If a particle has position function s(t) = t3 − 12t2 + 36t, then it is speeding up on the
intervals (2,4), (6,∞). and slowing down on the intervals [0,2], (4,6).

(14) If two cars start moving from the same point with Car A traveling south at 60mph and
Car B traveling west at 25mph, then their distance is increasing at a rate of 65mph 2
hours later.
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