The following are true statements involving chapters 2 and 3. Prove these statements by
working through the problem and showing all necessary steps.
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Since all of these are equal, g(z) is continuous at = = 1.
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Since the left and right hand limits aren’t the same, the limit DNE and g(z) is not
continuous at x = 2.
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has at least one solution.
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Let f(x)=+vx-5--. We want to show that f(x) =0 at least once.
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Since f is continuous on [5,6] with f(5) <0 and f(6) > 0, then by the Intermediate
Value Theorem, there is at least one solution to f(x) =0 between 5 and 6. v/
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(4)

.2z -1 -2z + 1]
lim = -
x—0 x

Solution Plugging in we get 8 so we want to check if the absolute values have
negative or positive inputs.

Plugging in z =0 to 2z — 1 gives a negative, therefore as z — 0, |22 - 1| = -(2z - 1)
Plugging in z =0 to 2z + 1 gives a positive, therefore as x - 0, |2z + 1| = 2z + 1
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(5) The equation of the line tangent to y = 3 + 422 — 223 at x = 1 is y = 2z + 3 and can be
found using the limit definition of a derivative.
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When x =1, y =3+4-2=>5. Using point-slope form we have

y-5=2(r-1)=>y-5=20-2=>y=20-2+5=>y=22+3v
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You can also do this using quotient rule.



1 3 ,
(8) F(y)Z(E—E)(y+5y3)3F(y)=E+—2+5
Solution

F(y)=(y?-3y™")(y+5y*) =y ' +5y -3y~ - 15y~ =14y~ -3y + by

14
F'(y) =14y 2+ 9yt +5= %+—2+5J
vty

You can also do this using product rule.



(9) ~CLF(@)g()h()] = F(x)a()h(x) + F(@)g' (2)h(r) + (@)oo (x)
Solution
@) g(@)h()] = L[ (@) g(x) b))
dx dx

= L [F(@)g(n)Ihx) + F(2)gr)H () < product rule

=[f'(x)g(z) + f(z)g'(x)]h(z) + f(x)g(x)h'(z) < product rule again
= ['(z)g(z)h(z) + f(x)g'(x)h(z) + f(x)g(x)g'(x) v



(10) H(0) =0sinf = H"(0) =2cosf - Hsind

Solution

H'(0) = (diﬁe) sinf + 9% sin 0

=sinf + 0 cosf

H"(0) = die(sinﬁ +6cosd

d d
= cosf + (@(9))008«9-{- 9@ cosf

= cosf +cosf +6(-sinf)

=2cosf -0sinf v
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(11) Jim 20060 _
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Solution
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1
cos(

:/

=1-1- .3
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d ysec2(£)—y2
(12) tan(g) =r+y= ﬁ = yQJrTZCQ@_)

Solution Taking the derivative of both sides with respect to x, we have:
_ %
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(13) If a particle has position function s(t) = ¢3 — 12t? + 36, then it is speeding up on the
intervals (2,4), (6,00). and slowing down on the intervals [0,2), (4,6).

Solution
v(t) =5'(t) =3t - 24t + 36 = 3(t* -8t +12) = 3(t - 6) (¢t - 2)

a(t)=v'(t)=6t-24=6(t-4)

Velocity is 0 when ¢ = 2,6. Testing the intervals we have

Acceleration is 0 when t = 4. Testing the intervals we have

- +

(Note that these lines should start at ¢ =0 since ¢ is time)

The particle is speeding up when the two number lines have the same sign. i.e. on

(2,4), (6,00) and slowing down when the number lines have opposite signs. i.e. on
[0,2), (4,6) v

[
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(14) If two cars start moving from the same point with Car A traveling south at 60mph and
Car B traveling west at 25mph, then their distance is increasing at a rate of 65mph 2
hours later.

Solution

d d d
We are given that d—f =25 and d—i = 60. We want to show that d—i = 65.

Using the pythagorean theorem we have

d d d
x2+y2:z2:>2x—x+2y—y:2z—z

dt dt dt

After two hours, Car A has travelled 120 miles, so y = 120 and Car B has traveled 50
miles so x = 50. Again, using the pythagorean theorem, we have

502 +120% = 2* = 2 = 130
Plugging all of this into the equation, we have

d d
2(50)(25) +2(120)(6) = 2(130)d—'§ < 2500 + 14400 = 260d—j
< 16900 = 260%
dt
dz

— =65 mph v
th mp
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