

Definitions

-0

Experiment

0

O-

A probability experiment is an action or trial through which specific results are obtained

Outcome

 \odot

An outcome is a result of a probability experiment

Sample Space

The set of all possible outcomes is called the sample space

>>>>>>

Event

An event is a subset of the sample space that consists of one or more outcomes.

Ο

Example

0

O-

 \mathbf{O}

A survey asked people for their blood types. Determine how many outcomes there are and identify the sample space.

 \mathbf{O}

There are 4 main types (A, B, AB, and O) that can be positive or negative. This gives 8 outcomes.

Sample space = {O+, O-, A+, A-, B+, B-, AB+, AB-}

More Examples

Ο

6

 \mathbf{O}

Probability Experiment: Spinning the spinner

-0

4 possible outcomes. Sample space = {red, yellow, blue, green} Probability experiment: Rolling a 6-sided die

6 possible outcomes. Sample space = $\{1, 2, 3, 4, 5, 6\}$

.

More Complex Example

-0

Suppose you toss a coin and then roll a six-sided die. List the possible outcomes.

Tails

Heads

0

 \odot

6

0

-0

.....

0

 \mathbf{O}

0

The Fundamental Counting Principle

If one event can occur *m* ways and a second event can occur *n* ways, the number of ways they can occur in a sequence is equal to

 $\overline{m} \cdot \overline{n}$

>>>>>

Each digit can only The first digit be used once cannot be a 0 or a 1

-0

10.9.8.7=5040

There are no restrictions

10.10.10.10=10,000

8.10.10.10=8000

<<<<<

0

0

Example

 $oldsymbol{0}$

.

You are buying a new car and you need to choose a manufacture, size, and color out of the following options:

- Manufacture: Ford, GM, Honda
- Car Size: Compact, Midsize
- **Color**: White, Red, Black, Green

 $3 \cdot 2 \cdot 4 = 24$

~~~~

0-

Classical Probability

 \odot

Note: this is also called theoretical probability

 $P(E) = rac{\# \, ext{of outcomes in event E (desired outcomes)}}{\# \, ext{of outcomes in sample space (possible outcomes)}}$

.

 \mathbf{O}

>>>>>

Example: You roll a six-sided die. Find the probability of the following events:

Ο

 \odot

• Event A: You roll a 3

- Event B: You roll a 7
- Event C: You roll a number less than 5

0 \mathbf{O} \odot **Empirical Probability** Note: this is also called statistical probability **>>>>>** $\frac{\text{frequency of event E}}{\text{total frequency}}$ P(E)******** n

Example: A company asks the ages of people who use a certain social network. Find the probability that the next user is between 23-35 years old.

0

<u>Ages</u>	<u>f</u>	
18-22	156	
23-35	312	$\frac{312}{$
36-49	254	975 - 0.02 (1.0.0270)
50-64	195	
65+	58	

0-

Definition:

-0

The <u>complement</u> of an event E, denoted E' (e-prime), is the set of the outcomes in a sample space that are not included in E

0

P(E) + P(E') = 1

O-

 \odot

-0

Ο

Example: A company asks the ages of people who use a certain social network. Find the probability that the next user is NOT between 23-35 years old.

0

<u>Ages</u>	f	
18-22	156	$1 - \frac{312}{975} = \frac{663}{975} = 0.68$
23-35	312	
36-49	254	
50-64	195	
65+	58	

0-