Chapter 7: Hypothesis Testing with One Sample

ACSTA101 - Professor MG

Introduction to Hypothesis Testing

Definition: Hypothesis Test

A <u>hypothesis test</u> is a process that uses sample statistics to test a claim about the value of a population parameter.

For example, If a manufacturer advertises that its new hybrid car has a mean gas mileage of 50 miles per gallon, you might want to collect a sample of cars to test this claim.

Definitions

A statement about a population parameter is called a <u>statistical</u> <u>hypothesis.</u> To test a parameter, we state two hypothesis. If one is false, the other must be true.

A null hypothesis (H_0)

- A statistical hypothesis that contains a statement of equality
- It may contain the following symbols: ≤, =, or ≥

An alternative hypothesis (H_a)

- The complement of the null hypothesis
- It may contain the following symbols:
 >, ≠, or

Verbal Statement H_0 The mean is	Mathematical Statements	Verbal Statement H_a The mean is
greater than or equal to k. at least k. not less than k. not shorter than k.	$egin{cases} H_0:\mu\geq k\ H_a:\mu< k \end{cases}$	less than k. below k. fewer than k. shorter than k.
less than or equal to k. at most k. not more than k. not longer than k.	$\begin{cases} H_0: \mu \leq k \\ H_a: \mu > k \end{cases}$	greater than k. above k. more than k. longer than k.
equal to k. k. exactly k. the same as k. not changed from k.	$\begin{cases} H_0: \mu = k \\ H_a: \mu \neq k \end{cases}$	not equal to k. different from k. not k. different from k. changed from k.

Examples: State the null and alternative hypotheses for the following. Then determine which hypothesis is the claim.

A school publicizes that the proportion of its students who are involved in at least one extracurricular activity is 61%.

A company advertises that the mean life of its furnaces is more than 18 years. A car dealership announces that the mean time for an oil change is less than 15 minutes.

H _o : p = 0.61	H _o ∶μ≥15	H _o ∶μ ≤ 18
H _a ̃: p ≠ 0.61	H _a ⁻ : μ < 15	Η _α ¨: μ > 18

Testing a Hypothesis

To test the null and alternative hypotheses, we always start by assuming H₀ is true. We then use a random sample to either:

- 1. Reject the null hypothesis, or
- 2. Fail to reject the null hypothesis

Because we're only looking at a sample, it is always possible that we will make the wrong decision, we call these mistakes Type I or Type II errors.

Possible Errors

Type I Error

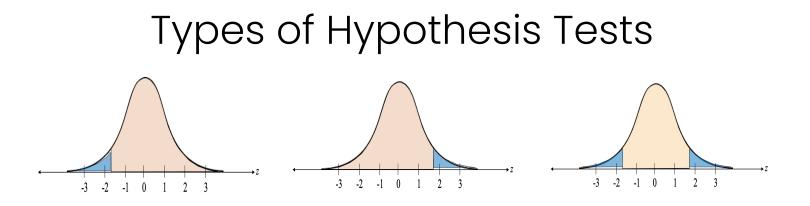
• A Type I error occurs if the null hypothesis is rejected when it is actually true.

Type II Error

• A Type II error occurs if the null hypothesis is not rejected when it is actually false.

	Truth of H ₀		
Decision	H_0 is true.	H_0 is false.	
Do not reject H ₀ .	Correct decision	Type II error	
Reject H ₀ .	Type I error	Correct decision	

Conducting Hypothesis Tests


In a hypothesis test, you'll need a level of significance (denoted **a**). It signifies the maximum probability you want to allow for making a Type I error.

Typical **a** values are 0.10, 0.05, and 0.01.

Once you have the hypotheses and significance level, collect the necessary test statistic from a random sample and convert it to a standardized value

Which standardized value?

- If you're testing a claim about population mean (μ) , you will look at \bar{x} (sample mean) and convert it to either a critical value z (if σ is known) or t (if σ is unknown)
- If you're testing a claim about population proportion (p), you will look at \hat{p} and convert to a critical value z.

Left-Tailed

Use when the alternative hypothesis uses a < symbol.

Right-Tailed

Use when the alternative hypothesis uses a > symbol. Two-Tailed

Use when the alternative hypothesis uses a ≠ symbol.

Examples: Determine which type of hypothesis test to use.

activity is 61%. H _o :p=0.61 H _a :p≠0.61	H _o ∶μ≥15 H _a ∶μ<15	minutes. H₀:µ≤18 H _a :µ>18
A school publicizes that the proportion of its students who are involved in at least one extracurricular activity is 61%.	A company advertises that the mean life of its furnaces is more than 18 years.	A car dealership announces that the mean time for an oil change is less than 15 minutes.