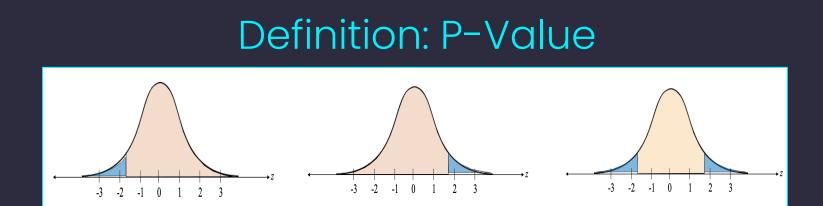


7.2 Hypothesis Testing for the mean (g known)

_		
	_	_



Left-Tailed

The P value in a left-tailed test is the area to the left of the standardized test statistic

Right-Tailed

The P value in a right-tailed test is the area to the right of the standardized test statistic

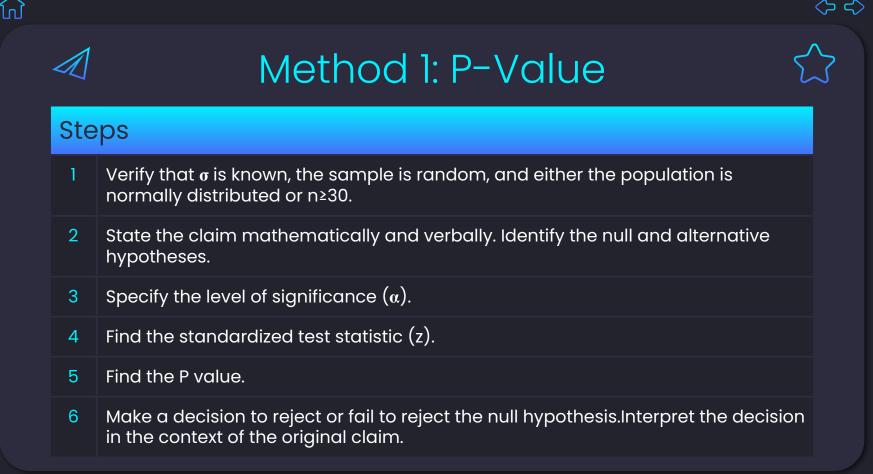
Two-Tailed

The P value in a two-tailed test is the area in both tails i.e. 2*(area in one tail) $\langle 2 \rangle$

Recall for sample mean: $ar{x}-\mu$ \boldsymbol{z} $\sigma_{/\sqrt{n}}$

Interpreting a decision

	Claim is H _o	Claim is H _a
Reject H _o	There is enough evidence to reject the claim	There is enough evidence to support the claim
Fail to reject H _o	There is not enough evidence to reject the claim	There is not enough evidence to support the claim



Example

In auto racing, a pit stop is where a racing vehicle stops for new tires, fuel, repairs, and other mechanical adjustments. The efficiency of a pit crew that makes these adjustments can affect the outcome of a race. A pit crew claims that its mean pit stop time (for 4 new tires and fuel) is less than 13 seconds. A random sample of 32 pit stop times has a sample mean of 12.9 seconds. Assume the population standard deviation is 0.19 second. Is there enough evidence to support the claim at $\alpha = 0.01$? Use a P-value.

P=0.0014 < α so we reject H₀ (i.e. there is enough evidence to support the claim)

1

Example:

According to a study of U.S. homes that use heating equipment, the mean indoor temperature at night during winter is 68.3°F. You think this information is incorrect. You randomly select 25 U.S. homes that use heating equipment in the winter and find that the mean indoor temperature at night is 67.2°F. From past studies, the population standard deviation is known to be 3.5°F and the population is normally distributed. Is there enough evidence to support your claim at $\alpha = 0.05$? Use a P-value

Answer: There is not enough evidence to support your claim

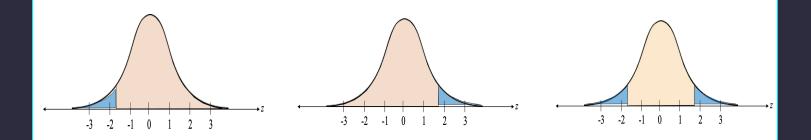
לא כי

Definitions:

A rejection (or critical) region is the range of values for with H₀ is not probable. You reject H₀ if your statistic falls in the rejection region.

The critical value that separates the rejection region from the rest is denoted z₀

Rejection Regions: The area of the region should be equal to $\boldsymbol{\alpha}$



Left-Tailed

ĺnÌ

The rejection region is the area to the left of z_0

Right-Tailed

The rejection region is the area to the right of z₀

Two-Tailed

The rejection regions are the areas to the left of the first z₀ and the area to the right of the second $\langle 2 c \rangle$

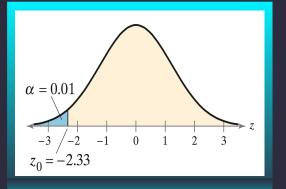
Example: Find the z₀ and rejection region for a left-tailed test with α=0.01

Alpha	Tail	Z
0.10	Left Right Two	-1.28 1.28 ±1.645
0.05	Left Right Two	-1.645 1.645 ±1.96
0.01	Left Right Two	-2.33 2.33 ±2.575

ĺnÌ

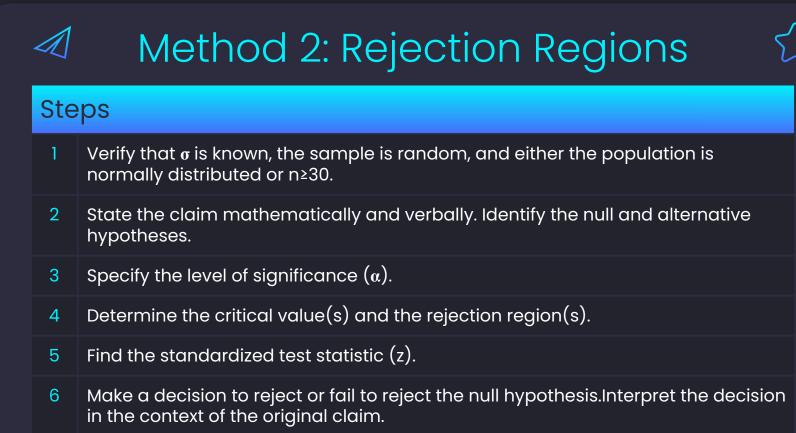
So z₀=-2.33

The table to the left shows common z₀ values



 $\langle \Sigma \rangle \langle \Sigma \rangle$

$\langle \neg \rangle$



Example

In auto racing, a pit stop is where a racing vehicle stops for new tires, fuel, repairs, and other mechanical adjustments. The efficiency of a pit crew that makes these adjustments can affect the outcome of a race. A pit crew claims that its mean pit stop time (for 4 new tires and fuel) is less than 13 seconds. A random sample of 32 pit stop times has a sample mean of 12.9 seconds. Assume the population standard deviation is 0.19 second. Is there enough evidence to support the claim at $\alpha = 0.01$? Use a P-value.

H₀: µ ≥ 13 H_a: µ < 13 (claim)

 $\alpha = 0.01$

Using the table for z_0 values, we get $z_0 = -2.33$ and the rejection region is any z-value less than this $z = {12.9 - 13 \over 0.19/\sqrt{32}} \ pprox -2.98$

Our $z < z_0$, so we reject H_0 (i.e. there is enough evidence to support the claim)