Hypothesis Testing for 7.4 Proportions For population proportion, if np≥5 and nq≥5, then:

$$z=rac{\hat{p}-p}{\sqrt{^{pq}/n}}$$

Hypothesis Testing: Rejection Regions

Steps	
1	Verify that np≥5 and nq≥5.
2	State the claim mathematically and verbally. Identify the null and alternative hypotheses.
3	Specify the level of significance (a).
4	Determine the critical value(s) and the rejection region(s).
5	Find the standardized test statistic (z).
6	Make a decision to reject or fail to reject the null hypothesis.Interpret the decision in the context of the original claim.

Example

A researcher claims that less than 45% of U.S. adults use passwords that are less secure because complicated ones are too hard to remember. In a random sample of 100 adults, 41% say they use passwords that are less secure because complicated ones are too hard to remember. At $\alpha = 0.01$, is there enough evidence to support the researcher's claim?

np = 100(0.45) = 45 and nq = 100(0.55) = 55
H₀: p ≥ 0.45
H_a: p < 0.45 (claim)
α = 0.01
Using the table for z₀ values,
we get z₀=-2.33 and the
rejection region is any
z-value less than this
$$z = \frac{0.41 - 0.45}{\sqrt{(0.45)(0.55)/1}}$$

Our $z > z_{0'}$ so we fail to reject H_0 (i.e. there is not enough evidence to support the claim)

Example

A researcher claims that 51% of U.S. adults believe, incorrectly, that antibiotics are effective against viruses. In a random sample of 2202 adults, 1161 say antibiotics are effective against viruses. At α = 0.10, is there enough evidence to support the researcher's claim?

$$np = 2202(0.51) = 1123$$
 and $nq = 2202(0.49) = 1079$

 H_0 : p = 0.51 (claim) H_a : p ≠ 0.51 α = 0.10

 $\hat{p} = 1161/2202 \approx 0.527$

Using the table for z_0 values, we get $-z_0 = -1.645$, $t_0 = 1.645$, and the rejection region is any t-value less than -1.645or greater than 1.645

$$z = rac{0.527 - 0.51}{\sqrt{(0.51)(0.49)/_{2202}}} \ pprox 1.60$$

Our z is not in the region of rejection, so we fail to reject H_0 (i.e. there is not enough evidence to reject the claim)