**Recall:** The Unit Circle



**Exercise:** Use the unit circle to graph  $y = \sin x$ ,  $y = \cos x$  and  $y = \tan x$ , where x is the angle measure in radians. Check your answer with a graphing utility.

## **Definitions:**

- The *amplitude* of a function f is half the difference between the max and the min values of f.
- The *period* of a function is the smallest positive number where the function values start to repeat.

## Example:





Graphing Exercise: Use a graphing utility to graph the following functions:

•  $y = 2 \sin x$ 

- $y = 3\cos x$
- $y = 2 \tan x$

•  $y = 5 \sin x$ 

- $y = 6 \cos x$
- $y = 7 \tan x$

**Brainstorm:** How does the number in front of the  $\sin x$  and  $\cos x$  affect the graph?

Graphing Exercise: Use a graphing utility to graph the following functions:

- $y = \sin 2x$   $y = \cos \pi x$   $y = \tan 2x$   $y = \sin \frac{x}{4}$   $y = \cos \frac{x}{2}$   $y = \tan \frac{x}{2}$ •  $y = \tan 2x$

**Brainstorm:** How does the number in front of the x affect the graph?

Brainstorm: Putting the previous two brainstorms together, what can we say about graphs of functions that looks like  $f(x) = A \sin Bx$ ,  $f(x) = A \cos Bx$ ,  $f(x) = A \tan Bx$ ?

**Recall:** In your previous course(s), you learned about vertical and horizontal shifts (i.e. translations) of graphs as well as vertical and horizontal reflections. What do you remember?

Graphing Exercise: Use a graphing utility to graph the following functions:

•  $y = \sin\left(x - \frac{\pi}{2}\right)$ •  $y = -3\cos(\pi x)$ •  $y = 4\tan(3x + 2)$ •  $y = \sin(2x - \pi)$ •  $y = 2\cos\left[2\pi\left(x - \frac{1}{4}\right)\right]$ •  $y = -\tan\left(3\left(x + \frac{\pi}{6}\right)\right)$ 

**Brainstorm:** Based on the above graphs, what strategies can we use to graph functions that look like the following?

- $f(x) = \pm A \sin(Bx \pm C) \pm D$
- $f(x) = \pm A\cos(Bx \pm C) \pm D$
- $f(x) = \pm A \tan(Bx \pm C) \pm D$

**Definition:** When graphing trigonometric functions, horizontal shifts are referred to as *phase shifts*.

## Graphing Basic Trigonometric Functions: A Summary

Exercises: Graph the following functions over one or more periods. List the amplitudes, periods, phase shifts, and vertical shifts:

(1) 
$$y = -\tan\left(\frac{\pi}{4}x + \frac{\pi}{8}\right)$$
 (2)  $y = -2\sin\left(\frac{x}{4} - \frac{\pi}{2}\right) - 2$  (3)  $y = \sin\left(3x + \frac{\pi}{2}\right) + 1$