Sections 7.3 Lecture Notes

Solving Trigonometric Equations: When solving trigonometric equations, we have to remember the fact that trigonometric functions are periodic.

Theorem/Reminder: For integers *n*:

 $\sin(\theta \pm n\pi) = \begin{cases} \sin \theta, & \text{if } n \text{ is even} \\ -\sin \theta, & \text{if } n \text{ is odd} \end{cases}$ $\cos(\theta \pm n\pi) = \begin{cases} \cos \theta, & \text{if } n \text{ is even} \\ -\cos \theta, & \text{if } n \text{ is odd} \end{cases}$

 $\tan(\theta \pm n\pi) = \tan\theta$, for all n

Example: Solve $\cos \theta = 1$.

Solution: Looking at the unit circle, we see that cosine is 1 at $\theta = 0$ and $\theta = 2\pi$. But, this is also true of any angle in that position, including angles like -2π , 4π , and 198π .

Brainstorm: If we're only looking for solutions between $[0, 2\pi]$, then we can look at the unit circle, but how do we account for the infinitely many solutions that exist outside of that?

Exercises: Find all solutions:

(1)
$$\sin \theta = \frac{1}{2}$$

(2) $2 \cot t + 1 = -1$
(3) $2 \sin^2 t - 5 \sin t + 2 = 0$
(4) $\cos^2 x + \cos x - 6 = 0$

For some trigonometric equations, you may have to use trigonometric identities to rewrite the problem before solving it.

Exercises:

- (1) $2\tan\theta = \sec^2\theta$ (3) $2\tan^2 x 3\tan x \sec x 2\sec^2 x = 0$
- (2) $\sin^2 x + \cos x + 1 = 0$