Co-function Identities:

•
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

•
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

•
$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

•
$$\csc\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

•
$$\sec\left(\frac{\pi}{2} - \theta\right) = \csc\theta$$

•
$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

Brainstorm: Use the following picture of a triangle to understand why the above identities are true:

Sum and Difference Identities (Trigonometric Addition Formulas):

•
$$\sin(s+t) = \sin s \cos t + \cos s \sin t$$

•
$$\sin(s-t) = \sin s \cos t - \cos s \sin t$$

•
$$\cos(s+t) = \cos s \cos t - \sin s \sin t$$

•
$$\cos(s-t) = \cos s \cos t + \sin s \sin t$$

•
$$\tan(s+t) = \frac{\tan s + \tan t}{1 - \tan s \tan t}$$

•
$$\tan(s-t) = \frac{\tan s - \tan t}{1 + \tan s \tan t}$$

Brainstorm: How can we use plus/minus notation (\pm and \mp) to turn the above 6 equations into 3?

Exercise: Use the sum and difference identities to prove at least one of the co-function identities.

Exercises (finding new trigonometric values): Use the sum and difference formulas to find the exact value of the following functions

 $(1) \cos 15^{\circ}$

(2) $\tan\left(\frac{\pi}{12}\right)$

Exercise (applying the identities):

- (1) Let $\sin \alpha = \frac{4}{5}$ and $\cos \beta = \frac{3}{5}$. Find the following:
 - (a) $\sin(\alpha + \beta)$
 - (b) $\cos(\alpha + \beta)$
 - (c) $\tan(\alpha + \beta)$

Exercise (going backward): Simplify the following by applying a $\operatorname{sum}/\operatorname{difference}$ identity

$$(1) \cos \frac{\pi}{5} \cos \frac{\pi}{30} + \sin \frac{\pi}{5} \sin \frac{\pi}{30}$$

(3)
$$\frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{3}\tan\frac{\pi}{6}}$$

$$(2) \sin(x+y)\cos y - \cos(x+y)\sin y$$

$$(4) \ \frac{2\tan\left(\frac{\pi}{8}\right)}{1-\tan^2\left(\frac{\pi}{8}\right)}$$

Exercise (trigonometric proofs): Verify the following

(1)
$$\sin(\theta + \pi) = -\sin\theta$$

(3)
$$\sin(a+b) + \sin(a-b) = 2\sin a \cos b$$

(2)
$$\frac{\sin(\alpha-\beta)}{\sin\alpha\sin\beta} = \cot\beta - \cot\alpha$$

$$(4) \cos(a-b) - \cos(a+b) = 2\sin a \sin b$$