Sections 8.5 Lecture Notes

Definition: The *polar coordinates* (r, θ) of a point P are its distance r (radius) from the origin and the angle θ between the positive x-axis and the line from (0,0) to P. The usual (x, y) are called the *rectangular (or cartesian) coordinates.*

Example: Plot the polar coordinates $(1, \frac{\pi}{4})$ and $(2, -\frac{\pi}{2})$

Brainstorm: What do you think a negative radius means? In other words, how would you plot a point that looks like $(-r, \theta)$?

Example: Graph $(-3, 150^{\circ})$

Brainstorm: What equations relate rectangular coordinates x and y to polar coordinates r and θ ? How can we use the equations to convert between the two?

Examples:

- (1) Convert $\left(7, \frac{\pi}{6}\right)$ from polar coordinates to rectangular coordinates.
- (2) Convert $(-1,\sqrt{3})$ from rectangular coordinates to polar.
- (3) Convert the polar equation to a rectangular equation: $r \sin \theta + 2 \cos \theta = 0$
- (4) Convert the rectangular equation to a polar equation: $2x y^2 = 0$