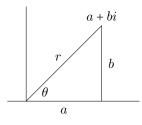
Section 8.6 Lecture Notes

Complex Numbers Review

Definition: The *imaginary unit i* is defined as a square root of -1. In other words, $\sqrt{-1} = i$. **Note:** The property $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$ is *not* true when both *a* and *b* are negative.

Examples: Simplify the following expressions using *i*.


- (1) $\sqrt{-16}$ (5) (-2+3i) + (4-6i) (9) $\frac{17}{4+i}$ (2) $\frac{2\pm\sqrt{-24}}{2}$ (6) (5-7i) - (8+3i) (10) $\frac{3+2i}{5-i}$
- (3) $\sqrt{-3} \cdot \sqrt{-3}$ (7) (-5+i)(7-9i) (11) i^{19}
- (4) $\sqrt{-2} \cdot \sqrt{-8}$ (8) $(-3+2i)^2$ (12) i^8

New Material

Definition: Any complex number can be expressed in standard form a + bi, where a and b are real numbers. a is called the *real part* and b is called the *imaginary part*.

Graphing Complex Numbers: Just like real numbers can be graphed on a number line, complex numbers can be graphed on a *complex plane*, where the horizontal axis is the *real axis* and the vertical axis is the *imaginary axis*.

Brainstorm: What equations relate θ , r, a, and b?

Definitions: Given a complex number a + bi,

- The trigonometric form is $r(\cos \theta + i \sin \theta)$, where $a = r \cos \theta$ and $b = r \sin \theta$.
- $r = \sqrt{a^2 + b^2}$ is called the *modulus* of the number
- θ is called the *argument*.

Examples: Find the trigonometric form for each complex number.

(1)
$$1+i$$
 (2) $-1-i\sqrt{3}$

Examples: Rewrite the trigonometric form as a + bi, where a and b are real numbers.

(1)
$$4\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
 (2) $\sqrt{3}\left(\cos 150^\circ + i\sin 150^\circ\right)$

Brainstorm: What happens when you multiply two trigonometric forms $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ by each other? What about when you divide them? **Example:** Find the product and quotient of $4(\cos 45^\circ + i \sin 45^\circ)$ and $2(\cos 135^\circ + i \sin 135^\circ)$.

Brainstorm: What happens when you raise a trigonometric form $z = r(\cos \theta + i \sin \theta)$ to a positive power (i.e. what is z^n)?