
Complete as many of the following problems as you can with your table. You do not have to go in order. If **your entire table** finishes early, and your answers have been checked, you may leave early.

1. If $\sin(\theta) = \frac{3}{5}$ find the following:

(a)
$$\tan(\theta)$$
 if $\frac{\pi}{2} < \theta < \pi$

(b)
$$\cos(\theta)$$
 if $0 < \theta < \frac{\pi}{2}$

2. Find the standard six trigonometric functions for θ .

3. Assume that α is an angle in standard position whose terminal side contains the point (3,-4). Find the three standard trigonometric values for α .

4. Determine the values of the other 4 standard trigonometric functions of β where $\sin \beta = -\frac{8}{17}$ and $\cos \beta = \frac{15}{17}$.

Key:

1. (a)
$$-\frac{3}{4}$$

$$an \theta = \frac{x-2}{x+2}$$

3.
$$\sin \alpha = -\frac{1}{2}$$

4.
$$\tan \beta = -\frac{8}{1!}$$

(b)
$$\frac{4}{5}$$

$$\sec \theta = \frac{\sqrt{2x^2+6}}{x-2}$$

$$\csc \beta = -\frac{17}{9}$$

1. (a)
$$-\frac{3}{4}$$
 $\tan \theta = \frac{x-2}{x+2}$ 3. $\sin \alpha = -\frac{4}{5}$ 4. $\tan \beta = -\frac{8}{15}$ (b) $\frac{4}{5}$ $\sec \theta = \frac{\sqrt{2x^2+8}}{x-2}$ $\cos \alpha = \frac{3}{5}$ $\csc \beta = -\frac{17}{8}$ 2. $\sin \theta = \frac{x-2}{\sqrt{2x^2+8}}$ $\csc \theta = \frac{\sqrt{2x^2+8}}{x+2}$ $\cot \theta = \frac{x+2}{\sqrt{2x^2+8}}$ $\cot \theta = \frac{x+2}{x-2}$

$$\csc\theta = \frac{\sqrt{2x^2 + 3}}{x + 2}$$

$$\tan \alpha = -\frac{4}{3}$$

$$\sec \beta = \frac{17}{15}$$

$$\cos \theta = \frac{x+2}{\sqrt{2x^2+8}}$$

$$\cot \theta = \frac{x+2}{x-2}$$

$$\cot\beta=-\tfrac{15}{8}$$