Final Exam Practice Questions

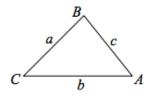
Note: This document is split up based on major mathematical themes covered throughout the course. A topic that is not on this practice final may still show up on the actual final exam if it was covered in class.

Exponential and Logarithmic Functions

- (1) The half-life of a radioactive substance is 9 years. Initially a sample has 20 grams. How many grams remain after 8 years?
- (2) Initially, 200 bacteria are present in a colony. Eight hours later there are 500. What is the population two hours after the start?
- (3) Initially a bank account that is compounded continously has \$4,000. 10 years later it has \$12,000. Find the amount after 5 years.
- (4) Graph $y = 1 \ln(2 x)$ labelling all asymptotes. Then find the domain and range.
- (5) Graph $y = \ln(-3 x) 2$ and answer the following questions:
 - a) What is the equation of the asymptote?
 - b) What is the domain?
 - c) What is the range?
- (6) Combine into a single logarithm: $\ln(x+y) \ln(xy) \frac{1}{2}\ln(x-1)$
- (7) Combine into a single logarithm: $2\ln\left(\frac{1}{x}\right) + 3\ln(x+1)$
- (8) Combine into a single logarithm (with no coefficient): $\ln(x^2 + y^2) + 2\ln(y^3)$
- (9) Write as a sum/difference of multiples of the simplest possible logarithms: $\log_2 \sqrt{\frac{xy}{(y-x)^3}}$
- (10) Write as a sum/difference of multiples of the simplest possible logarithms: $\log_b \left(\frac{\sqrt[3]{x}}{x+1}\right)$
- (11) Write as sum/difference of **multiples** of the simplest possible logarithms: $\log_b \left(\frac{\sqrt[4]{2y}}{u^3 + a}\right)$
- (12) Simplify $\log_9\left(\frac{1}{3}\right)$
- (13) Simplify $\log_2\left(\frac{1}{\sqrt{2}}\right)$
- (14) Simplify $\ln(e\sqrt{e})$
- (15) Express using natural logarithms: $\log_{10}(14)$
- (16) Solve $e^{3x} = 8$

- (17) Solve $e^{2x+4} = 9$
- (18) Solve $\ln(x+1) + \ln(x+2) = \ln(6)$
- (19) Solve $\ln(x+3) + \ln(x+4) = \ln(2)$
- (20) Solve $\ln x = 1 + \ln(x 1)$
- (21) Solve $\ln(2x) = 1 + \ln(x-1)$
- (22) Solve $\ln(x) + \ln(x-1) = \ln 2$
- (23) Solve $(3^{2x})^5 = 10$
- (24) Solve $3^x = 2^{x+1}$
- (25) Solve $3^{2x-3} = \sqrt{3}$

Trigonometric Functions and Inverse Trigonometric Functions


- (1) Convert 300° to radians.
- (2) Find the radian measure of an angle which intercepts a 10 inch arc on a circle of radius 36 inches.
- (3) Find $\cot\left(\frac{11\pi}{3}\right)$

(4) If
$$\cos(\theta) = -\frac{4}{5}$$
 and $\pi < \theta < \frac{3\pi}{2}$, find $\sin \theta$.

- (5) If $\cos \theta = \frac{4}{5}$ and $\frac{3\pi}{2} < \theta < 2\pi$, find $\sin \theta$
- (6) Suppose $\sin(\theta) = -\frac{1}{4}$ and $\pi < \theta < \frac{3\pi}{2}$. Find $\cos(\theta)$
- (7) The side opposite angle θ of a right triangle is 6. The hypotenuse length is x^2 , find $\tan(2\pi \theta)$ and $\tan\left(\frac{\pi}{2} \theta\right)$.
- (8) Graph $y = -2\sin\left(\frac{x}{4} \frac{\pi}{2}\right)$ over one period. Label the *x*-values of the four parts.
- (9) Graph $y = \cos(\pi x \pi)$ over one period.
- (10) Graph $y = \tan\left(-\frac{x}{2} + \pi\right)$ over one period
- (11) Find $\tan\left(\sin^{-1}\left(\frac{2}{3}\right)\right)$
- (12) Find $\sin^{-1}\left(\sin\left(\frac{5\pi}{7}\right)\right)$

Trigonometric Identities and Equations

(1) Simplify
$$\frac{\sin(\theta)}{1 + \cos(\theta)} + \frac{1 + \cos(\theta)}{\sin(\theta)}$$

(2) Simplify $\tan(t)(\cos t + \cos(-t))$
(3) Simplify $\frac{\cot^2 t(\sec^2 t - 1)}{\sec^2 t - \tan^2 t + 1}$
(4) Prove $\csc t = \sin t + \cot t \cos t$
(5) Prove $\frac{\sec^2 \theta - \tan^2 \theta}{1 + \cot^2 \theta} = \sin^2 \theta$
(6) Simplify $\sin(x + y) \cos x - \cos(x + y) \sin x$
(7) Simplify $\frac{\tan(\pi/5) - \tan(\pi/30)}{1 + \tan(\pi/5) \tan(\pi/30)}$
(8) If $\tan(s) = 2$ and $\tan(t) = 3$, find $\tan(s + t)$.
(9) If $\sin \theta = 2x$ and $\frac{\pi}{2} < \theta < \pi$, find $\sin(2\theta)$
(10) If $\sin \theta = 2x$ and $\frac{\pi}{2} < \theta < \pi$, find $\sin(\frac{\theta}{2})$
(11) Find all solutions to $2\cos^2 x - \sin x - 1 = 0$
(12) Find all solutions to $2\cos^2 x - 5\cos x = -2$
(13) Find all solutions to $\cos^2 x + \sin x + 1 = 0$
(14) Consider the following triangle

- (a) If a = 3, b = 1, and c = 3, find $\angle B$.
- (b) If a = 3, $\angle C = 60^{\circ}$, and $\angle A = 50^{\circ}$, find b.
- (c) If a = 3, b = 2, and $\angle B = 30^{\circ}$, solve for $\angle C$.
- (d) If a = 3, c = 2, and $\angle C = 60^{\circ}$, find b.
- (15) The two legs of a right triangle are 2 and 3. What is the cosine of the smallest angle? (Hint: the smallest angle is opposite the smallest side)

Polar Equations, Trigonometric Forms of Complex Numbers, and Systems of Equations

- (1) Convert the polar equation to a rectangular equation: $2\sin\theta 3\cos\theta = r$
- (2) Convert the rectangular equation to a polar equation: $y = x^2$
- (3) Convert $\left(2, \frac{\pi}{4}\right)$ to rectangular coordinates. Convert (π, π) to polar coordinates.
- (4) Convert the polar equation to a rectangular equation: $r^2 = \cos(2\theta)$
- (5) Convert the rectangular equation to a polar equation: $x^2 y^2 = 1$
- (6) Write $\cos 150^\circ + i \sin 150^\circ$ in standard form
- (7) Write $5\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ in standard form
- (8) Write $-\sqrt{2} i\sqrt{2}$ in trigonometric form
- (9) Write $\sqrt{3} + i$ in trigonometric form
- (10) Write $-1 + i\sqrt{3}$ in trigonometric form
- (11) Compute the operation and leave your answer in trigonometric form: $6\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right) \div \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$
- (12) Compute the operation, then convert your answer to standard form: $5(\cos 90^\circ + i \sin 90^\circ) \div 2(\cos 30^\circ + i \sin 30^\circ)$
- (13) Compute the operation and leave your answer in trigonometric form: $9(\cos 45^\circ + i \sin 45^\circ) \cdot 3(\cos 15^\circ + i \sin 15^\circ)$
- (14) Compute the operation, then convert your answer to standard form: $\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right) \cdot \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$
- (15) Compute the operation, then convert your answer to standard form: $(3(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}))^4$
- (16) Compute the operation, then convert your answer to standard form: $(2(\cos 90^\circ + i \sin 90^\circ))^5$
- (17) Solve: $\begin{array}{c} 4x = 3y + 17 \\ x = -2y 4 \end{array}$
- (18) Solve: $\begin{array}{c} 6x + 3y = 30\\ 2x + 3y = 18 \end{array}$
- (19) Solve: $\begin{array}{c} x 3y = 4 \\ -2x + 6y = 1 \end{array}$
- (20) Solve: $\begin{array}{l} 2x + y 2z = -1 \\ 3x 3y z z = 5 \\ x 2y + 3z = 6 \end{array}$

(21) Solve:

$$x + y + z = 2$$

 $y - 3z = 1$
 $2x + y + 5z = 0$
(22) Solve:
 $4x + 2y - 6z = 0$
 $x - y + z = 0$