Supplementary Midterm 2 Practice Problems

Note: There are practice problems on MathXL. These problems are meant to supplement the ones that are already online.

Graphing Problems: Graph the following functions

(1) $y = 2\sin\left(2x - \frac{\pi}{2}\right)$

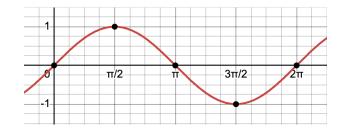
When graphing $y = A\sin(Bx - C)$, we should first factor out B. In this Solution problem, we would get:

$$y = 2\sin\left(2\left(x - \frac{\pi}{4}\right)\right)$$

A gives us the amplitude, $\frac{2\pi}{B}$ gives us the period, and C gives us the phase shift.

- General shape: $y = \sin x$
- Amplitude = 2
- Period = P = 2π/2 = π
 Phase shift = π/4 to the right

The general graph of $\sin x$ looks like:



We need to adjust the graph to have a period of π , amplitude of 2, and shifted $\frac{\pi}{4}$ to the right.

We can take the point at the origin (0,0) and shift it to the right to $(\frac{\pi}{4},0)$. To ensure that we graph at least one period, we can go out π to the right.

$$\frac{\pi}{4} + \pi = \frac{\pi}{4} + \frac{4\pi}{4} = \frac{5\pi}{4}$$

This means that our graph will start at $\frac{\pi}{4}$ and go out to $\frac{5\pi}{4}$ on the x axis. We then need to divide that segment into 4 pieces to label our x axis accurately. You can do this either my finding midpoints, or by repeatedly adding $\frac{1}{4}$ of the period, P.

Method 1: Using Midpoints

The point between $\frac{\pi}{4}$ and $\frac{5\pi}{4}$ is:

$$\frac{\frac{\pi}{4} + \frac{5\pi}{4}}{2} = \frac{\frac{6\pi}{4}}{2} = \frac{6\pi}{4} \cdot \frac{1}{2} = \frac{6\pi}{8} = \frac{3\pi}{4}$$

The point between $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ is:

$$\frac{\frac{\pi}{4} + \frac{3\pi}{4}}{2} = \frac{\frac{4\pi}{4}}{2} = \frac{4\pi}{4} \cdot \frac{1}{2} = \frac{4\pi}{8} = \frac{\pi}{2}$$

The point between $\frac{3\pi}{4}$ and $\frac{5\pi}{4}$ is:

$$\frac{\frac{3\pi}{4} + \frac{5\pi}{4}}{2} = \frac{\frac{8\pi}{4}}{2} = \frac{8\pi}{4} \cdot \frac{1}{2} = \frac{8\pi}{8} = \pi$$

So now we know that our x axis is going to be labeled:

$$\frac{\pi}{4} \quad \frac{\pi}{2} \quad \frac{3\pi}{4} \quad \pi \quad \frac{5\pi}{4}$$

Method 2: Adding $\frac{P}{4}$

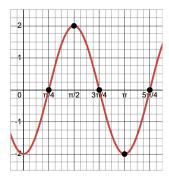
For our problem $P/4 = \pi/4$, so we're going to start with our starting point at $\pi/4$ (from the shift) and add $\pi/4$ (P/4) each time to get the next tick mark.

$$\frac{\pi}{4} + \frac{\pi}{4} = \frac{2\pi}{4} = \frac{\pi}{2} \qquad \qquad \frac{\pi}{2} + \frac{\pi}{4} = \frac{2\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{4}$$
$$\frac{3\pi}{4} + \frac{\pi}{4} = \frac{4\pi}{4} = \pi \qquad \qquad \pi + \frac{\pi}{4} = \frac{4\pi}{4} + \frac{\pi}{4} = \frac{5\pi}{4}$$

So now we know that our x axis is going to be labeled:



The graph shape of $y = \sin x$ starts at the middle, goes up to A, goes back to the middle, goes down to -A, and then goes back to the middle. So, our final graph (over one period) looks like:

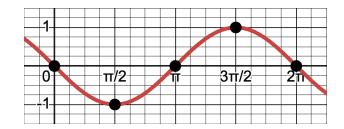


(2) $y = -3\sin\left(\frac{1}{2}(x-\pi)\right) + 1$

Solution The steps for this problem are very similar to the steps from Problem 1, so I'm not going to go into as much detail. B is already factored out, so we don't need to do that step. From the equation, we know:

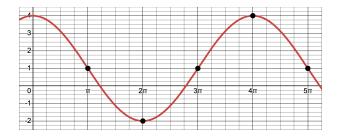
- General shape: $y = -\sin x$
- Amplitude = 3
- Period = $\frac{2\pi}{\frac{1}{2}} = 2\pi \cdot 2 = 4\pi$
- Phase shift = π to the right
- Vertical shift = 1 up

The general graph of $-\sin x$ looks like:



Applying the phase shift and period, our start point is at $x = \pi$, and our end point will be at $\pi + 4\pi = 5\pi$. Using either of the methods listed above, our x axis should look like the following:

Keeping in mind that the graph needs to be shifted up 1, that the amplitude is 3, and the general shape of a negative sine graph, we get:

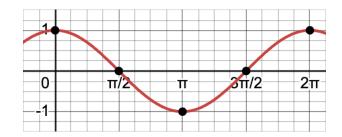


(3) $y = \cos\left(\frac{\pi}{2}(x-1)\right) - 2$

Solution The steps for this problem are very similar to the steps from Problem 1, so I'm not going to go into as much detail. *B* is already factored out, so we don't need to do that step. From the equation, we know:

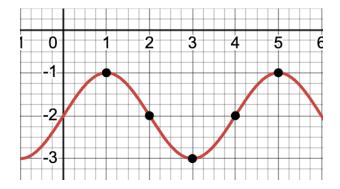
- General shape: $y = \cos x$
- Amplitude = 1
- Period = $\frac{2\pi}{\frac{\pi}{2}} = 2\pi \cdot \frac{2}{\pi} = 4$
- Phase shift = 1 to the right
- Vertical shift = 2 down

The general graph of $\cos x$ looks like:



Applying the phase shift and period, our start point is at x = 1, and our end point will be at 1 + 4 = 5. Using either of the methods listed above, our x axis should look like the following:

Keeping in mind that the graph needs to be shifted down 2 and the general shape of a negative sine graph, we get:



(4) $f(x) = -2\tan(2x + \pi)$

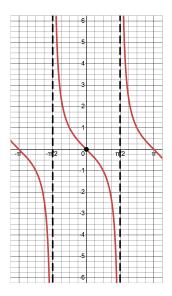
Solution The steps for this problem are very similar to the steps from Problem 1 (though slightly altered, since it's a tangent graph).

First, we need to factor out B:

$$-2\tan(2x+\pi) = -2\tan\left(2\left(x+\frac{\pi}{2}\right)\right)$$

- General shape: $y = -\tan x$
- Amplitude: none
- Period = $\frac{\pi}{2}$
- Phase shift = $\frac{\pi}{2}$ to the left

The general graph of $-\tan x$ looks like:

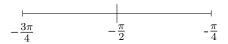


For tangent graphs, we just need to figure out the center point and the asymptotes. Applying the phase shift, our center point shifts from (0,0) to $\left(-\frac{\pi}{2},0\right)$. Since the distance between the asymptotes is P, we can find the new asymptotes by adding $\frac{P}{2}$ and subtracting $\frac{P}{2}$ from the center point.

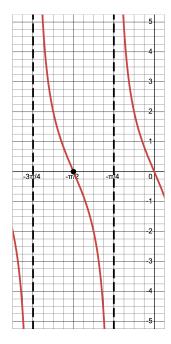
$$\frac{P}{2} = \frac{\frac{\pi}{2}}{2} = \frac{\pi}{4}$$

$$\frac{-\pi}{2} + \frac{\pi}{4} = -\frac{2\pi}{4} + \frac{\pi}{4} = -\frac{\pi}{4} \qquad \qquad -\frac{\pi}{2} - \frac{\pi}{4} = -\frac{2\pi}{4} - \frac{\pi}{4} = -\frac{3\pi}{4}$$

So our x axis would look like



Keeping in mind that the graph has the general shape of a negative tangent graph, we get:



Proofs: Verify the following

Note: These solutions only give one possible way to prove the problem. There are many other ways you could do these.

(1) $1 + \sec^2 x \sin^2 x = \sec^2 x$

Solution

$$1 + \sec^2 x \sin^2 x$$
 $\sec^2 x$ $1 + \frac{1}{\cos^2 x} \cdot \sin^2 x$ $1 + \frac{\sin^2 x}{\cos^2 x}$ $1 + \tan^2 x$ (Using the quotient identity $\tan x = \frac{\sin x}{\cos x}$) $\sec^2 x \checkmark$ (Using the pythagorean identity $1 + \tan^2 x = \sec^2 x$)

(2)
$$\tan^2 x = \sec^2 x - \sin^2 x - \cos^2 x$$

Solution

$$\frac{\tan^2 x}{(\text{Using the pythagorean identity } \sin^2 x + \cos^2 x = 1)} = \sec^2 x - (\sin^2 x + \cos^2 x)$$

$$(\text{Using the pythagorean identity } 1 + \tan^2 x = \sec^2 x) = \tan^2 x \checkmark$$

(3)
$$\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} = 2 \csc x$$

Solution

$\frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x}$	$2 \csc x$
$\frac{\sin x}{1-\cos x} \cdot \frac{1+\cos x}{1+\cos x} + \frac{\sin x}{1+\cos x} \cdot \frac{1-\cos x}{1-\cos x}$	
$\frac{\sin x (1 + \cos x)}{(1 - \cos x)(1 + \cos x)} + \frac{\sin x (1 - \cos x)}{(1 - \cos x)(1 + \cos x)}$	
$\frac{\sin x(1+\cos x)+\sin x(1-\cos x)}{(1-\cos x)(1+\cos x)}$	
$\frac{\sin x + \sin x \cos x + \sin x - \sin x \cos x}{1 - \cos x + \cos x - \cos^2 x}$	
$\frac{2\sin x}{1-\cos^2 x}$	
$\frac{2\sin x}{\sin^2 x}$	(Using the pythagorean identity $\sin^2 x + \cos^2 x = 1$)
$\frac{2}{\sin x}$	
$2 \csc x \checkmark$	(Using the reciprocal identity $\frac{1}{\sin x} = \csc x$)

 $(4) \quad \frac{\cot^2 x}{\csc x - 1} = \frac{1 + \sin x}{\sin x}$

Solution

$\frac{\cot^2 x}{\csc x - 1}$	$\frac{1+\sin x}{\sin x}$
$\frac{\csc^2 x - 1}{\csc x - 1}$	(Using the pythagorean identity $\cot^2 x + 1 = \csc^2 x$)
$\frac{(\csc x-1)(\csc x+1)}{\csc x-1}$	(Using $a^2 - b^2 = (a - b)(a + b)$)
$\csc x + 1$	
$\frac{1}{\sin x} + 1$	(Using the reciprocal $\csc x = \frac{1}{\sin x}$)
$\frac{1}{\sin x} + \frac{\sin x}{\sin x}$	
$\frac{1+\sin x}{\sin x} \checkmark$	

(5) $\sin(a+b) + \sin(a-b) = 2\sin a \cos b$

Solution

$\sin(a+b) + \sin(a-b)$	$2\sin a\cos b$
$\sin a \cos b + \sin b \cos a + \sin a \cos b - \sin b \cos a$	(Using sum/difference identity for sine)
$2\sin a\cos b \checkmark$	

(6) $\frac{1-\tan\theta}{1+\tan\theta} = \frac{1-\sin 2\theta}{\cos 2\theta}$

Solution

$\frac{1\!-\!\tan\theta}{1\!+\!\tan\theta}$	$\frac{1{-}{\sin 2\theta}}{\cos 2\theta}$
$\frac{1 - \frac{\sin \theta}{\cos \theta}}{1 + \frac{\sin \theta}{\cos \theta}}$	(Using quotient identity $\tan x = \frac{\sin x}{\cos x}$)
$\frac{1 - \frac{\sin \theta}{\cos \theta}}{1 + \frac{\sin \theta}{\cos \theta}} \cdot \frac{\cos \theta}{\cos \theta}$	
$\frac{\cos\theta(1-\frac{\sin\theta}{\cos\theta})}{\cos\theta(1+\frac{\sin\theta}{\cos\theta})}$	
$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta}$	
$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} \cdot \frac{\cos\theta - \sin\theta}{\cos\theta - \sin\theta}$	
$\frac{\cos^2\theta - \sin\theta\cos\theta - \sin\theta\cos\theta + \sin^2\theta}{\cos^2\theta - \sin\theta\cos\theta + \sin\theta\cos\theta - \sin^2\theta}$	
$\frac{\cos^2\theta - 2\sin\theta\cos\theta + \sin^2\theta}{\cos^2\theta - \sin^2\theta}$	
$\frac{\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta}{\cos 2\theta}$	(Using double-angle identity $\cos 2x = \cos^2 x - \sin^2 x$)
$\frac{1\!-\!2\sin\theta\cos\theta}{\cos2\theta}$	(Using pythagorean identity $\sin^2 x + \cos^2 x = 1$)
$\frac{1-\sin 2\theta}{\cos 2\theta} \checkmark$	(Using double-angle identity $\sin 2x = 2 \sin x \cos x$)