
Reference Sheet

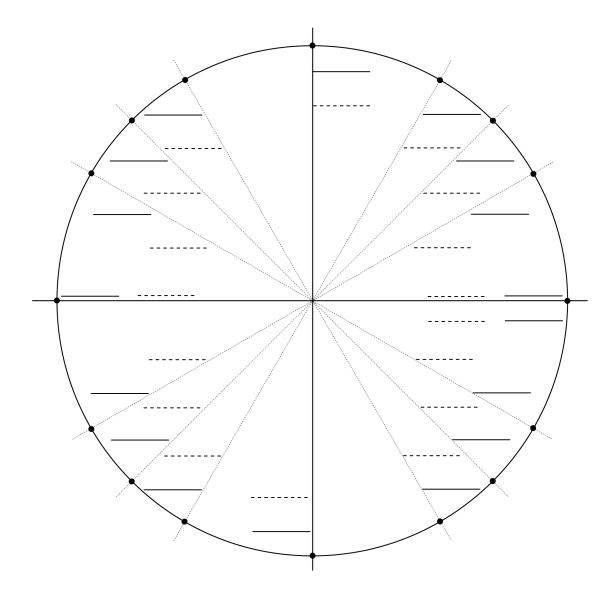
Interval Notation

Properties of Exponents

• $b^n b^m = b^{n+m}$	• $b^{-n} = \frac{1}{b^n}, b \neq 0$
• $\frac{b^n}{b^m} = b^{n-m}, b \neq 0$	• $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$ for $a, b \neq 0$
• $b^0 = 1, b \neq 0$ • $(b^n)^m = b^{nm}$	• $\sqrt[n]{x} = y \Rightarrow y^n = x$
• $(ab)^n = a^n b^n$	• $\sqrt[n]{x} = x^{1/n}$
• $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, b \neq 0$	• $x^{m/n} = \left(\sqrt[n]{x}\right)^m = \sqrt[n]{x^m}$

Exponential and Logarithmic Functions

- An exponential function is a function of the form $f(x) = Ca^x$, $a > 0, a \neq 1$
- The formula for **compound interest** (compounded *n* times per year) is $A = P\left(1 + \frac{r}{n}\right)^{nt}$
- The formula for **continuously compounded interest** is $A = Pe^{rt}$
- The **half-life** exponential formula is $A(t) = C(\frac{1}{2})^{t/k}$
- A logarithmic function is a function of the form $f(x) = \log_b x$, with x > 0
- $\log_b x = y \Leftrightarrow x = b^y$ $\log_b 1 = 0$
- $\log_e x = \ln x$ $\log_b x + \log_b y = \log_b xy$
- $\log_{10} x = \log x$ • $\log_b x - \log_b y = \log_b \frac{x}{y}$
- $\log_b b^x = x$ $\log_b (x^r) = r \log_b x$
- $b^{\log_b x} = x$, for x > 0.


• $\log_b x = \frac{\log_a x}{\log_a b}$

Trigonometric Functions

- Conversion between degrees and radians: $180^{\circ} = \pi$ radians.
- Arc length formula: $\theta = \frac{s}{r}$, where θ is in radians.
- Pythagorean theorem: $a^2 + b^2 = c^2$, where c is the length of the hypotenuse.
- $\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}$ • $\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}}$ • $\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}$ • $\tan(\theta) = \frac{\text{opposite}}{\text{adjacent}}$ • $\cot \theta = \frac{1}{\tan \theta} = \frac{\text{adjacent}}{\text{opposite}}$

Unit Circle

NOTE: You cannot fill in this unit circle ahead of the exam.

