Complete as many of the following problems as you can. You do not have to go in order. You can use a calculator to check your work but not to solve the problems.

If your entire table finishes early, you may leave early.

(1) Solve the follow inequalities:

(a) 
$$|4x - 1| + 7 \le 14$$

(b) 
$$|2x+3| > 4$$

(2) Plot the ordered pairs (-9,2), (-1,-3), (1,3), and (2,-4) on the rectangular coordinate plane. Label your points and indicate which quadrant each point is in.



 $\boldsymbol{x}$ 

(3) Find the following values, then try to sketch the graph of the equation  $y = 5 - x^2$ .

| X  | У |
|----|---|
|    |   |
| -3 |   |

- \_2
- 1
- 0
- 1
- 2
- 3

y



 $\boldsymbol{x}$ 

(4) Find the following values, then sketch the graph of the equation  $y = -\frac{4}{3}x$ 

| X  | у |
|----|---|
| -9 |   |
| -6 |   |
| -3 |   |
| 0  |   |
| _  |   |

6

y



 $\boldsymbol{x}$ 

- (5) Determine whether the given ordered pair is a solution to the given equation:
  - (a) (-3,6);  $y = -\frac{2}{3}x + 4$

(c) (1,-5);  $y = x^2 + x - 7$ 

(b) (1,3); 2x + 3y = 6

(d) (8,5);  $y = \frac{5}{x-7}$ 

- (6) If f(x) = 8x + 6, find the following
  - (a) f(7)

- (b) f(x+4)
- (c) f(-x)

- (7) If  $f(x) = -4x^2 + 3x 2$ , find the following
  - (a) f(2)

(b) f(-1)

(8) Use the vertical line test to determine if y is a function of x in the graph.











(9) Consider the following graph.



- (a) Is this a function?
- (b) Determine the domain and range.
- (c) What is f(2) and f(-2)?
- (d) For what x-value(s) does f(x) = 0?

## Key:

- (1) (a)  $\left[-\frac{3}{2}, 2\right]$ 
  - (b)  $\left(-\infty, -\frac{7}{2}\right) \cup \left(2, \infty\right)$
- (2) Use graphing utility to check
- (3) Use graphing utility to check
- (4) Use graphing utility to check
- (1) Ose graphing utility t
- (5) (a) Yes
  - (b) Yes

- (c) No
- (d) Yes
- 6) (a) 62
  - (b) 8x + 38
  - (c) -8x + 6
- (7) (a) -12
  - (b) -9
- (8) (a) Yes

- (b) No
- (c) Yes
- (d) No
- (9) (a) Yes
  - (b) D:  $(-\infty, \infty)$ , R:  $[-1, \infty)$
  - (c) 3 and -1
  - (d) x = 0 and x = -4