Complete as many of the following problems as you can. You do not have to go in order. You can use a calculator to check your work but not to solve the problems.

If your entire table finishes early, you may leave early.

- (1) Find the slope of the line passing through the points below, or state that the slope undefined.
 - (a) (5,3) and (6,8)

(c) (5,7) and (6,9)

(b) (-5,1) and (5,5)

(d) (-1,2) and (5,6)

- (2) Rewrite the given equation in slope-intercept form:
 - (a) 6x 3y 12 = 0

(b) 9x - 3y - 9 = 0

- (3) Find the x and y intercepts and then use them to graph the following:
 - (a) 5x = 10y 20

(c) 3x - 4y = -12

(b) -6x + 4y = 0

(d) $f(x) = -\frac{2}{3}x + 2$

- (4) Find the slope and y-intercept of the graph and use it to graph the following functions:

(c) $y = \frac{2}{3}x - 4$

(a) f(x) = -3x(b) $h(x) = -\frac{3}{4}x + 2$

- (5) Write the slope intercept form of the equation that satisfies the given conditions:
 - (a) Slope is 3, passing through (3,5)
 - (b) Slope is -2 passing through (-3, -6)
 - (c) Passing through (-6,0) and (0,6)
 - (d) Passing through (-3,1) and (6,-2)

- (6) Write the point-slope form of the equation satisfying the given conditions. Then use the point-slope form of the equation to write the slope intercept form of the equation.
 - (a) Parallel to y = 4x and passing through (4,1)
 - (b) Perpendicular to y = 4x and passing through (1,4)
 - (c) Passing through (-8,8) and perpendicular to the line that has an x-intercept of (3,0) and a y-intercept of (0,-6).

Key:

$$(1)$$
 (a) 5

(b) $\frac{2}{5}$

(c) 2

(d) $\frac{2}{3}$

(2) (a) y = 2x - 4

(b) y = 3x - 3

(3) Use graphing utility to check

(a) (0,2), (-4,0)

(b)
$$(0,0)$$

(c) (0,3), (-4,0)

(d) (0,2), (3,0)

(4) Use graphing utility to check

(a) m = -3, b = 0

(b) $m = -\frac{3}{4}$, b = 2(c) $m = \frac{2}{3}$, b = -4 (5) (a) y = 3x - 4

(b) y = -2x - 12

(c) y = x + 6

(d) $y = -\frac{1}{3}x$

(6) (a) y-1=4(x-4), y=4x-15

(b) $y-4=-\frac{1}{4}(x-1), y=-\frac{1}{4}x+\frac{17}{4}$

(c) $y-9=-\frac{1}{2}(x+8)$, $y=-\frac{1}{2}x+4$