Sections 8.2-8.3: Applications of Quadratic Equations

Steps for solving word problems:

- Read the problem (possibly more than once)
- Determine what equation(s) you should use
- Plug in the numbers you are given to solve for the wanted variable.
- Check your answer to make sure it makes sense in the context of the problem. Get rid of any solutions that do not make sense.
- (1) A start-up company that manufactures drones projects that its annual profit, p(t), in thousands of dollars, over the first 10 years of operation can be approximated by the function $p(t) = 1.2t^2 + 4t 8$, where t is the number of full years the company has been in business.
 - (a) Estimate the profit or loss of the company after the first year. Interpret your answer.
 - (b) Estimate the profit or loss of the company after 6 years. Interpret your answer.
 - (c) Estimate the time needed for the company to break even.

- (2) The function $N(t) = 0.0054t^2 1.46t + 95.11$ can be used to estimate the average number of years of life expectancy remaining for a person of age t years, where $30 \le t \le 100$
 - (a) Estimate the remaining life expectancy of a person of age 40.
 - (b) If a person has a remaining life expectancy of 14.3 years, estimate the age of the person.

- (3) Hillary owns a business that sells designer necklaces. The revenue, R(n), from selling n necklaces for $n \le 50$, is R(n) = n(50 0.2n).
 - (a) Determine the revenue when 30 necklaces are sold.
 - (b) How many necklaces must be sold to have a revenue of \$480?

(4) Betty is on top of a building and throws a baseball upward from an initial height of 60 feet with an initial velocity of 30 feet per second. The height h (in feet) of an object t seconds after it is projected upward can be determined by:

$$h = -16t^2 + v_0t + h_0,$$

where v_0 is the initial velocity of the object (in feet per second) and h_0 is the initial height of the object (in feet).

- (a) How long after Betty throws the ball will the ball be 25 feet above the ground?
- (b) How long after Betty throws the ball will the ball hit the ground?
- (c) What is the height of the ball after 2 seconds?

Key (without interpretations):

(1) (a) -2.8

.8

(a) 45.35

(a) \$1320

4) (a) ≈ 2.7

(b) 59.2

(b) ≈ 3.1(c) 56 feet

(c) ≈ 1.4

(b) 77.65

(b) 10