

(1) Using the graph of f(x) below, find the following limits:

- (a) $\lim_{x \to 1^+} f(x)$
- (b) $\lim_{x \to -4} f(x)$
- (c) $\lim_{x\to 6} f(x)$

- (d) $\lim_{x \to 1^-} f(x)$
- (e) $\lim_{x \to 1} f(x)$
- (2) Using the graph of f(x) below find the following:

- (a) $\lim_{x \to -\infty} f(x)$
- (b) $\lim_{x \to \infty} f(x)$
- (c) $\lim_{x \to a^-} f(x)$

- (d) $\lim_{x \to a^+} f(x)$
- (e) $\lim_{x \to a} f(x)$
- (f) $\lim_{x \to b^-} f(x)$
- (g) The equations of any asymptotes

- (3) Find the following limits:
 - (a) Find $\lim_{x\to 2} \frac{3x^2 x 10}{x^2 4}$ (b) $\lim_{x\to 4} \frac{x 4}{\sqrt{x} 2}$

 - (c) $\lim_{x\to -2} \frac{-2x-4}{x^3+2x^2}$
 - (d) $\lim_{x\to 1} \frac{x-1}{\sqrt{x+3}-2}$
 - (e) $\lim_{x \to 0} \frac{\sin(4y)}{7y}$

- (f) $\lim_{x\to 0} \frac{\tan x}{x}$ (Hint: Rewrite $\tan x$ first)
- (g) $\lim_{x \to \infty} \frac{x^2 + 8}{6x^2 x}$
- (h) $\lim_{x \to \infty} \frac{x^2 5x 9}{2x^4 + 3x^3}$
- (i) $\lim_{x \to \infty} \frac{5x^3 + 7x 8}{-4x^2 2x + 1}$ (j) $\lim_{t \to 2^-} \frac{t + 2}{t 2}$
- (4) Evaluate the following limits for f(x)

$$f(x) = \begin{cases} x^2 - 3x + 4 & x \le 1\\ x + 1 & 1 < x \le 3\\ x^2 - 3x + 4 & x > 3 \end{cases}$$

(d) $\lim_{x \to 3^{-}} f(x)$ (e) $\lim_{x \to 3^{+}} f(x)$ (f) $\lim_{x \to 3} f(x)$

(a) $\lim_{x \to 1^{-}} f(x)$ (b) $\lim_{x \to 1^{+}} f(x)$ (c) $\lim_{x \to 1} f(x)$

- (5) Find $\lim \frac{1}{x^2-4}$ as
 - (a) $x \rightarrow 2^+$

(c) $x \rightarrow -2^+$

(b) $x \to 2^{-}$

- (d) $x \rightarrow -2^-$
- (6) It can be shown that the inequalities

$$1 - \frac{x^2}{6} < \frac{x \sin x}{2 - 2 \cos x} < 1$$

hold for all values of x close to zero. What, if anything, does this tell you about

$$\lim_{x \to 0} \frac{x \sin x}{2 - 2 \cos x}?$$

Give reasons for your answer.

- (7) Use the squeeze theorem to find $\lim_{x\to\infty} \frac{\sin 3x}{x}$.
- (8) Is the following function continuous at x = 0?

$$f(x) = \begin{cases} \frac{x-6}{x-3} & x < 0 \\ 2 & x = 0 \\ \sqrt{4+x^2} & x > 0 \end{cases}$$

2

- (9) Is f(x) continuous at x = 1 if $f(x) = \begin{cases} 8x 3 & x \le 1 \\ 4x^2 + 5 & x > 1 \end{cases}$? If not, is it continuous from the left, right, or neither?
- (10) Find the value of the constant k that makes the function continuous:

$$f(x) = \begin{cases} \frac{2x^2 - x - 15}{x - 3} & x \neq 3\\ kx - 1 & x = 3 \end{cases}$$

(11) For what value of a is

$$f(x) = \begin{cases} x^2 - 1, & x < 3\\ 2ax, & x \ge 3 \end{cases}$$

continuous at every x?

- (12) Show that there is at least one solution to $x^5 2x^3 2 = 0$
- (13) Show that there are at least two real zeroes of the function $f(x) = x^3 5x^2 + 3x + 6$
- (14) Using the limit definition of the derivative, find the equation of the line tangent to the curve $f(x) = x^2 + x + 5$ at x = 2
- (15) Using the limit definition of the derivative, find f'(x) for $f(x) = \frac{1}{x+1}$