Sections 2.4-2.5

Definition: If $\lim_{x \to a} f(x) = \pm \infty$, $\lim_{x \to a^+} f(x) = \pm \infty$, or $\lim_{x \to a^-} f(x) = \pm \infty$, the line x = a is called a vertical asymptote of f.

Exercises:

(1) Consider the graph of $\frac{x}{(x^2-1)^2}$ and find the following limits.

(2) Consider the graph of $\frac{x-2}{(x-1)^2(x-3)}$ and find the following limits.

Brainstorm: What relationship do you notice between the function and the equation(s) of its vertical asymptote(s)?

Note: If you can completely cancel the factor, then that corresponds to a hole in the graph, not a vertical asymptote.

Example: The following is a graph of $y = \frac{(x-2)(x-1)}{x-1}$

Exercises: Find the vertical asymptotes of the following functions:

(1)
$$\frac{-x^3+5x^2-6x}{-x^3-4x^2}$$
 (2) $\frac{x^2-4x+3}{x^2-1}$

Fact:

•
$$\lim_{x \to 0^+} \frac{1}{x} = \infty$$
 • $\lim_{x \to 0^-} \frac{1}{x} = -\infty$

Strategy: To figure out whether the limit as x approaches your vertical asymptote is ∞ , $-\infty$, or DNE, you need to figure out the one-sided limits by determining whether your function is heading towards an arbitrarily large positive number or an arbitrarily large negative number.

Example: Consider the function $f(x) = \frac{x-1}{(x+2)(x-3)}$. If I want to find $\lim_{x\to 3} f(x)$, I would need to look at the one-sided limits, since there is a vertical asymptote at x = 3.

Approaching from the left of 3 means that we're looking at x < 3 for x values **close** to x = 3. Looking at what sign the function would be at such an x value, we would have:

 $\frac{(\# \text{ close to, but less than } 3) - 1}{((\# \text{ close to, but less than } 3) + 2)((\# \text{ close to, but less than } 3) - 3)} \rightarrow \frac{(+)}{(+)(0^-)} \rightarrow \text{negative}$ This gives us. $\lim_{x \to 3^-} \frac{x - 1}{(x + 2)(x - 3)} = -\infty$ You can do the same to see that $\lim_{x \to 3^+} \frac{x - 1}{(x + 2)(x - 3)} \rightarrow \frac{+}{(+)(0^+)} \rightarrow \infty$ **Exercises:** Figure out all of the above limits analytically instead of graphically.

(1)
$$\lim_{x \to 1} \frac{x}{(x^2 - 1)^2}$$
(3)
$$\lim_{x \to 1} \frac{x - 2}{(x - 1)^2(x - 3)}$$
(2)
$$\lim_{x \to -1} \frac{x}{(x^2 - 1)^2}$$
(3)
$$\lim_{x \to 3} \frac{x - 2}{(x - 1)^2(x - 3)}$$

Optional Practice: Figure out the behavior around the vertical asymptotes for $y = \frac{-x^3+5x^2-6x}{-x^3-4x^2}$ and $y = \frac{x^2-4x+3}{x^2-1}$

Definition: The line y = L is a horizontal asymptote of y = f(x) if either of the following is true: $\lim_{x \to \infty} f(x) = L$ or $\lim_{x \to -\infty} f(x) = L$

Example: In the following graph, both y = L and y = M are horizontal asymptotes.

Fact: $\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$ for n > 0

Exercises:

(1) Find
$$\lim_{x \to -\infty} \left(2 + \frac{10}{x^2} \right)$$
 (2) Find $\lim_{x \to \infty} \left(5 + \frac{\sin x}{\sqrt{x}} \right)$

More Facts:

- $\lim_{x \to \pm \infty} x^n = \infty$, if n > 0 is even
- $\lim_{x \to \infty} x^n = \infty$ and $\lim_{x \to -\infty} x^n = -\infty$, if n > 0 is odd
- $\lim_{x \to \pm \infty} (a_n x^n + a_{n-a} x^{n-a} + \dots + a_1 x + a_0) = \lim_{x \to \pm \infty} a_n x^n$

Exercises: Determine the end behavior (i.e. the limits at $x \to \pm \infty$) of the following:

(1)
$$3x^4 - 6x^2 + x - 10$$
 (2) $-2x^3 + 3x^2 - 12$

Rational Functions: When finding the end behavior of rational functions, divide by the largest power of x in the denominator.

Example: Find the end behavior of $f(x) = \frac{3x+2}{x^2-1}$

$$\lim_{x \to \pm \infty} \frac{3x+1}{x^2 - 1} = \lim_{x \to \pm \infty} \frac{\frac{3x}{x^2} + \frac{2}{x^2}}{\frac{x^2}{x^2} - \frac{1}{x^2}}$$
$$= \frac{0+0}{1-0}$$
$$= 0$$

Exercises: Find the end behavior of the following:

(1)
$$g(x) = \frac{40x^4 + 4x^2 - 1}{10x^4 + 8x^2 + 1}$$
 (2) $h(x) = \frac{x^3 - 2x + 1}{2x + 4}$

Brainstorm: What is a pattern we could notice about the end behavior of rational functions in relation to the degrees of the numerator and denominator?

Special Case: If the degree of the denominator is one less than the degree of the numerator, the graph has a slant asymptote. You can find this asymptote by performing polynomial division.

Example (reminder on how to do polynomial division): Divide $x^3 + 1$ by x - 1

$$\begin{array}{r} x^{2} + x + 1 \\ x - 1) \hline x^{3} + 0x^{2} + 0x + 1 \\ - x^{3} + x^{2} \\ \hline x^{2} + 0x \\ - x^{2} + x \\ \hline x + 1 \\ - x + 1 \\ \hline 2 \end{array}$$

We can write the results as the following: $\frac{x^3+1}{x-1}=x^2+x+1+\frac{2}{x-1}$

Note: Some of you may have learned something called <u>synthetic division</u>. Please remember that this <u>only</u> works when dividing by a polynomial that looks like x - c. You still need to know long division for every other case.

Exercise: Find the slant asymptote for $f(x) = \frac{2x^2+6x-2}{x+1}$

Even More Facts:

•
$$\lim_{x \to \infty} e^x = \infty$$

• $\lim_{x \to \infty} e^{-x} = 0$
• $\lim_{x \to \infty} e^x = 0$
• $\lim_{x \to -\infty} e^{-x} = \infty$
• $\lim_{x \to \infty} \ln x = \infty$

Exercises: Find the limit as $x \to \infty$ of the following:

(1)
$$f(x) = e^{5x}$$
 (2) $f(x) = 4 - \ln 3x$