ACMAT161 Summer 2024 Professor Manguba-Glover Classwork 21 & 22

Name:

Complete as many of the following problems as you can with your table in the allotted time. You do not have to go in order.

Classwork 21

- 1. Approximate the area bounded by the graph of $f(x) = 3\sqrt{x}$ and the x-axis between x = 4 and x = 16 with 6 rectangles.
 - (a) Using left endpoints
 - (b) Using right endpoints
 - (c) Are your answers is (a) and (b) overestimates or underestimates?
 - (d) Using midpoints
- 2. Estimate the area under the graph of f on the interval [0,2] using left and right Riemann sums with n = 4, where f is continuous and has values given by the following table:

x	f(x)
0	1
0.5	3
1	4.5
1.5	5.5
2	6

- 3. Evaluate the midpoint Riemann sum for $f(x) = 1 x^2$ on [1,3] with n = 4 (Note: this function is below the x-axis, so the area will be negative)
- 4. Evaluate the midpoint Riemann sum for $f(x) = 1 x^2$ on [0,3] with n = 6 (Note: this function is below the x-axis, so the area will be negative)

Key:

1.	(a)	≈ 105.876	2.	7, 9.5
	(b) (c)	≈ 117.876(a) underestimates, (b) overestimates	3.	-6.625
	(d)	≈ 112.062	4.	-3.875

Classwork 22

- 1. Use geometry to evaluate $\int_2^4 (2x+3) dx$
- 2. Use geometry to evaluate $\int_1^6 (2x-6) dx$ (Note: keep in mind negative and positive areas)
- 3. Assume $\int_0^5 f(x) dx = 3$ and $\int_0^7 f(x) dx = -10$. Evaluate the following:

(a)
$$\int_{0}^{7} 2f(x) dx$$

(b) $\int_{5}^{7} f(x) dx$
(c) $\int_{7}^{0} f(x) dx$
4. Evaluate $\int_{0}^{10} (60x - 6x^{2}) dx$
5. Evaluate $\int_{4}^{16} 3\sqrt{x} dx$
6. Evaluate $\int_{0}^{2\pi} 3\sin x dx$
7. Evaluate $\int_{1/16}^{1/14} \frac{\sqrt{t} - 1}{t} dt$

Key:

1. 18	4.	1000
2. 5	5.	112
3. (a) -20 (b) -13	6.	0
(c) 10	7.	$\frac{1}{2} - \ln 4$