
ACMAT161 Summer 2024 Professor Manguba-Glover Classwork 7 & 8

Name: _____

Complete as many of the following problems as you can with your table in the allotted time. You do not have to go in order.

Classwork 7

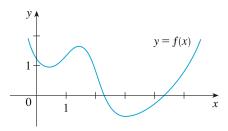
1. Where is the following function discontinuous? Explain which requirement it fails:

2. Where is the function discontinuous? Explain why. $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$

	$\frac{x^3 - 27}{x^2 - 9}$	$x \neq 3$
3. Is the $f(x)$ continuous at $x = 3$? At $x = -3$? Where $f(x) = \begin{cases} \\ \\ \\ \end{cases}$		
	9	0
	$\overline{2}$	x = 3

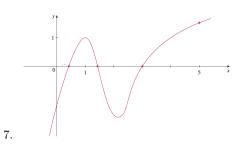
4. Determine the interval(s) where f(x) is continuous if $f(x) = \begin{cases} 0 & x < 0 \\ x^2 - 5x & 0 \le x \le 5 \\ 5 & x > 5 \end{cases}$

5. For what value of c is $f(x) = \begin{cases} \frac{x^3 - 1}{x - 1} & x < 1\\ cx - 2 & x \ge 1 \end{cases}$ continuous?


- 6. Find $\lim_{x \to \infty} e^{\frac{2x^2 + 7x 3}{x^2 5x + 1}}$
- 7. Explain why the equation $\cos x = x$ has at least one solution. (Hint: get everything to one side first)

Key:

1. (a)
$$x = 1, x = 3, x = 5$$
3. Yes at $x = 3$, no at $x = -3$ 6. e^2 (b) $(-\infty, 3], (3, \infty)$ 4. $(-\infty, 5], (5, \infty)$ 2. $x = 0$ 5. 57. Use IVT


Classwork 8

- 1. Find an equation of the line tangent to the graph of $f(x) = \frac{3}{x}$ at $\left(2, \frac{3}{2}\right)$
- 2. Find an equation of the line tangent to the graph of $f(x) = x^3 + 4x$ at (1,5)
- 3. Let $f(x) = \sqrt{2x} + 1$ and compute f'(2)
- 4. Find the derivative of $f(x) = -x^2 + 6x$
- 5. Find the derivative of $g(t) = \frac{1}{t^2}$
- 6. Find f' for $f(x) = \frac{1-x}{2+x}$
- 7. Sketch the derivative of f(x):

Key:

1.
$$y - \frac{3}{2} = -\frac{3}{4}(x-2)$$
 or $y = -\frac{3}{4}x + 3$
2. $y - 5 = 7(x-1)$ or $y = 7x - 2$
3. $\frac{1}{2}$
4. $-2x + 6$
5. $-\frac{2}{t^3}$
6. $-\frac{3}{(2+x)^2}$

