
Final Exam Practice Questions

Note: This document is split up based on major mathematical themes covered after the midterm
exam. Please use the midterm practice problems to practice the topics covered before the
midterm. A topic that is not on this practice exam may still show up on the actual exam if it
was covered in class.

Extreme Values and Applied Optimization

(1) Find the absolute extreme values, and the x coordinates where they occur, for the function
f(x) = cos(x) + x on the interval [0, π].

Solution
f ′(x) = − sinx + 1

f ′(x) = 0⇔ − sinx + 1 = 0
⇔ sinx = 1

⇒ x = π

2
on [0, π]

f (π
2
) = cos(π

2
) + π

2

= π

2

f(0) = cos(0) + 0
= 1

f(π) = cos(π) + π
= −1 + π

The absolute max is (π,−1 + π) and the absolute min is (0,1)



(2) Find the absolute extrema of f(x) = 3x4 − 4x3 on the interval [−1,2]

Solution
f ′(x) = 12x3 − 12x2 = 12x2(x − 1)

Thus there are two critical numbers: 0,1

f(0) = 3(0)4 − 4(0)3

= 0

f(1) = 3(1)4 − 4(1)3

= 3 − 4
= −1

f(−1) = 3(−1)4 − 4(−1)3

= 3 + 4
= 7

f(2) = 3(2)4 − 4(2)3

= 23(6 − 4)
= 8(2)
= 16

Thus the absolute max is (2,16) and the absolute min is (1,−1).



(3) Find the absolute maximum and minimum values of the following functions of the given
intervals.

(a) f(x) = x2 − 1, −1 ≤ x ≤ 2
(b) f(x) = 3

√
x, −1 ≤ x ≤ 8

Solution

(a)
f ′(x) = 2x so f ′(x) = 0⇔ x = 0

f(−1) = (−1)2 − 1
= 0

f(2) = 22 − 1
= 3← absolute max

f(0) = 02 − 1
= −1← absolute min

(b)

h′(x) = 1

3
x−2/3 = 1

3x2/3

This there is a critical point at x = 0

h(−1) = −1← abs min

h(0) = 0

h(8) = 3
√
8

= 2← abs max



(4) Find the coordinates (x, y) of the point P that maximize the area of the shaded rectangle

in the figure below.

Solution Since we know the line goes through (0,2) and (5,0), we have that the equation
of the line is

y = 2 − 2

5
x

Thus the area of the rectangle is

A = xy

= x(2 − 2

5
x)

= 2x − 2x2

5

f ′(x) = 2 − 4x

5
= 2(5 − 2x)

5

f ′(x) = 0⇔ 5 − 2x = 0

⇔ x = 5

2

Testing, we get that there is a relative maximum and thus an absolute maximum at x = 5

2
.

y = 2 − 2

5
(5
2
)

= 2 − 1
= 1

Thus P = (5
2
,1)



(5) Consider the parabola y = (x − 2)2. Find the coordinates (x, y) of the point P on lying
on this parabola between x = 0 and x = 2 such that the perimeter of the rectangle shown
below is the smallest.

3. (20pts) Consider the parabola y = (x � 2)2. Find the coordinates (x, y) of the point
P on lying on this parabola between x = 0 and x = 2 such that the perimeter of the
rectangle shown below is the smallest.

y = (x � 2)2

20

4

P

x

y

3

Solution

Perimeter = f(x, y) = 2x + 2y

Since the point P lies on the parabola y = (x − 2)2 ⇒ Perimeter = f(x) = 2x + 2(x − 2)2.
We need to find the absolute minimum of this function for x in [0,2]

f ′(x) = 2 + 4(x − 2) = 4x − 6

f ′(x) = 0⇔ 4x − 6 = 0⇔ x = 3

2

Hence, there is only one critical point. Testing the intervals we have

3/20 2

Therefore, there is a relative minimum (and thus an absolute minimum) at x = 3

2
. Thus

the x-coordinate of P is 3
2 and the y-coordinate is:

y = (3
2
− 2)

2

= 1

4



(6) A rectangular plot of land will be bounded on one side by a river and on the other three
sides by some sort of fence. With 800 m of fencing at your disposal, what is the largest
area you can enclose, and what are its dimensions?

Solution The picture is

River

x x

y

We are given
2x + y = 800⇒ y = 800 − 2x

Thus
A = xy = x(800 − 2x) = 800x − 2x2

Differentiating with respect to x we have

dA

dx
= 800 − 4x

This gives one critical point of x = 200. Testing the intervals we have that there is a
relative and thus absolute max at x = 200 ⇒ y = 800 − 400 = 400. So the dimensions are
200 m by 400 m

A = 200(400) = 80000m2



(7) An ecologist is conducting a research project on breeding pheasants in captivity. She first
must construct suitable pens. She wants a rectangular area with an additional fence across
its width. Find the maximum area she can fence in using 1200m of fencing. The area of
a rectangle is length times width, the amount of fencing used is the sum of the length of
all sides added together. Write your final answer in the form of a complete sentence and
use appropriate units.

Solution From the problem we know:

1200 = 3x + 2y⇔ y = 1200 − 3x
2

A = xy

= x ⋅ 1200 − 3x
2

= 1200x − 3x2
2

A′(x) = 1

2
(1200 − 6x)

= 600 − 3x

A′(x) = 0⇔ 600 − 3x = 0
⇔ 600 = 3x
⇔ x = 200

Testing we have that there is a relative max and thus an absolute max at x = 200. Thus
the maximum area is:

A(200) = 3x(400 − x)
2

= 3(200)(400 − 200)
2

= 600(200)
2

= 60,000m2



(8) An ecologist is conducting a research project on breeding pheasants in captivity. She first
must construct suitable pens. She wants a rectangular area with two additional fences
across its width, as shown in the sketch. Find the dimensions of the pen that has the
maximum area she can enclose with 3600 m of fencing.

Solution Labeling the width as x and the length as y the equations we have are

3600 = 4x + 2y and A = xy

Solving the first equation for y gives

2y = 3600 − 4x⇒ y = 1800 − 2x

Plugging this into the equation for area gives

A(x) = 1800x − 2x2

Taking the derivative we have

A′(x) = 1800 − 4x = 4(450 − x)

Thus the critical number is x = 450. Testing that this is a max we have

450

+ −

Thus the max occurs when x = 450m and y = 1800 − 2(450) = 900m



(9) A box with a square base must have a volume of 8 in3. What are the dimensions of the
box that will minimize the amount of material needed to build it (i.e. minimize surface
area).

Solution

x2y = 8⇒ y = 8

x2

A = 2x2 + 4xy

= 2x2 + 4x( 8

x2
)

= 2x2 + 32

x

Taking the derivative and solving for the critical point we have

A′(x) = 0⇔ 4x − 32

x2
= 0

⇔ 32

x2
= 4x

⇔ 32 = 4x3

⇔ x3 = 8
⇔ x = 2

Checking that this is a minimum we have

2

− +

Thus the min occurs when x = 2 and y = 8
22
= 2. The dimensions are 2 in by 2 in by 2in



(10) A box with no top is constructed by cutting equal-sized squares from the corners of a 12
cm by 12 cm sheet of metal and bending up the sides. What is the largest possible volume
of such a box? See the pictures below. (Note: The domain of x is (0,6).)

x

x

12

x

Solution Using the information provided, the picture can be drawn as:

x

12 − 2x
12 − 2x

This says that the volume is given by

V = (12 − 2x)(12 − 2x)(x) = 4x3 − 48x2 + 144x

Taking the derivative we have

V ′(x) = 12x2 − 96x + 144 = 12(x2 − 8x + 12) = 12(x − 6)(x − 2)

This gives critical numbers of x = 6 and x = 2 but since our domain is (0,6), the only
critical number we care about is x = 2. Testing the intervals we have

2

+ −

Thus there is a max at x = 2 which gives a volume of

V = (12 − 2(2))(12 − 2(2))(2) = 8 ⋅ 8 ⋅ 2 = 128 cm3



(11) Find the dimensions of a right circular cylinder of maximum volume that can be inscribed
in a sphere of radios 10 cm. What is the maximum volume?

Solution The picture looks like 

Using the picture we have that

(h
2
)
2

+ r2 = 102 ⇒ r2 = 100 − h2

4

Plugging this in we have

V = π (100 − h2

4
)h = 100πh − πh3

4

Differentiating with respect to h gives

dV

dh
= 100π − 3πh2

4
= 400π − 3πh2

4

Solving for the critical point we have

400π − 3πh2 = 0⇔ 3πh2 = 400π⇔ h2 = 400

3
⇔ h =

√
400

3
= 20√

3



Since the domain for h is [0,20] we have

V (0) = 0
V (20) = 0

V ( 20√
3
) = 100π ( 20√

3
) − π(20/√3)3

4

= 2000π√
3
− 203π

4 ⋅ (
√
3)3

= 2000π√
3
− 8000π

4 ⋅ 3
√
3

= 2000π√
3
− 2000π

3
√
3

= 6000π − 2000π
3
√
3

= 4000π

3
√
3

Thus the maximum volume is
4000π

3
√
3
cm3



(12) You fall asleep in class and dream that you are in charge making huge square-based, open-
top, rectangular boxes of steel for literally no reason. Dream-you realizes it is absolutely
essential that you build one that is 500 ft3, and this box must be made by welding steel
plates together along their edges. Find the dimensions for the base and height that will
make the steal box weigh as little as possible. (Note: though you are dreaming, all math-
ematical rules and laws of physics apply, because you’re really psyched for the upcoming
midterm.)

Solution We have

V = 500 = x2y⇒ y = 500

x2

We want to minimize the material so we want to minimize surface area which is given by

S = x2 + 4xy = x2 + 2000

x

Differentiating we have
dS

dx
= 2x − 2000

x2
= 2x3 − 2000

x2

Since x must be positive this gives one critical point of x = 10. Testing we have that there
is a relative and thus absolute minimum at x = 10.

(a)

x = 10⇒ y = 500

100
= 5

Thus the dimensions are 10 ft by 10 ft by 5 ft

(b) By minimizing the amount of material used, we minimize the weight used since the
weight depends on the material.



(13) A child flies a kite at a height of 300 ft, the wind carrying the kite horizontally away from
them at a rate of 25 ft/sec. How fast must they let out the string when the kite is 500 ft
away from them?

Solution The picture is the following:

 

Using the pythagorean theorem we have

x2 + 3002 = z2 ⇒ 2x
dx

dt
= 2z dz

dt

When z = 500 we have x2 +3002 = 5002 ⇒ x = 400. We are also given
dx

dt
= 25 and we want

to find
dz

dt
. Plugging in our known information we have

2(400)(25) = 2(500)dz
dt
⇔ dz

dt
= 20 ft/sec



(14) Explain why g(t) =
√
t +
√
1 + t − 4 has exactly one solution in the interval (0,∞). State

any theorems used.

Solution
g(1) = 1 +

√
2 − 4 < 0 and g(5) =

√
5 +
√
6 − 4 > 0

Thus by the Intermediate Value Theorem we have that there is at least on zero on (0,∞).
Assume there are two zeroes. Then by Rolle’s Theorem there is a c in (0,∞) such that
g′(c) = 0

g′(t) = 1√
t
+ 1√

1 + t

=
√
1 + t +

√
t√

t + t2
⋅
√
1 + t −

√
t√

1 + t −
√
t

= 1√
t + t2(

√
1 + t −

√
t)

f ′(c) = 0⇔ 1√
c + c2(

√
1 + c −√c)

= 0⇔ 1 = 0

which is impossible thus there cannot be two solutions.



(15) Show that 1 + x = x3 has exactly one solution in the interval [1,2]

Solution
1 + x = x3 ⇒ x3 − x − 1 = 0

Let f(x) = x3 − x − 1

f(1) = 1 − 1 − 1
= −1

f(2) = 8 − 2 − 1
= 5

Since f(x) is continuous on the interval [1,2] and since f(1) < 0 and f(2) > 0 then by the
Intermediate Value Theorem, f(x) = 0 has at least one solution.

Suppose f(x) = 0 has another solution. Since f(x) is continuous and differentiable, by the
Mean Value Theorem, f ′(x) = 0 at some point in [1,2].

f ′(x) = 0⇒ 3x2 − 1 = 0
⇒ 3x2 = 1

⇒ x2 = 1

3

⇒ x = ±
√

1

3

Both of these solutions are outside of [1,2]. Thus by MVT there cannot be two solutions.
(i.e. there is exactly one)



(16) Show that x4 − 4x = 1 has exactly one solution on [−1,0]. Please state explicitly any
theorems and how you are using them.

Solution Let f(x) = x4 − 4x − 1. (x4 − 4x = 1⇔ f(x) = 0)

f(−1) = (−1)4 − 4(−1) − 1
= 1 + 4 − 1
= 4

f(0) = (0)4 − 4(0) − 1
= −1

Since f(x) is a continuous function on [−1.0] with f(−1) > 0 and f(0) < 0, by the inter-
mediate value theorem there is at least one solution to f(x) = 0. Assume there is more
than one solution. Since f(x) is differentiable on (−1,0), by the mean value theorem (or
by Rolle’s theorem), f ′(x) = 0 in (−1,0).

f ′(x) = 0⇔ 4x3 − 4 = 0
⇔ 4x3 = 4
⇔ x3 = 1
⇔ x = 1(not in (−1,0))

Thus there can’t be more than one solution. I.e. there is exactly one.



(17) Show that f(x) = 2x3 + 3x2 + 6x + 1 has exactly one real root in [−1,0]. Be sure to state
and explain any theorems that you use.

Solution

f(−1) = 2(−1)3 + 3(−1)2 + 6(−1) + 1
= 2(−1) + 3(1) − 6 + 1
= −2 + 3 − 6 + 1
= −4

f(0) = 2(0)3 + 3(0)2 + 6(0) + 1
= 1

Since f is continuous, by IVT there is at least one solution. If there were more than one
then since f is differentiable, by MVT f ′(x) = 0 at some point in [−1,0]

f ′(x) = 6x2 + 6x + 6 = 6(x2 + x + 1)

x2 + x + 1 = 0⇒ x =
−1 ±

√
12 − 4(1)(1)
2(1)

⇒ x = −1 ±
√
−3

2

Which is impossible since you cant square root a negative number. Thus there is exactly
one solution.



First Derivative Test, Second Derivative Test, Graphing

(1) Let f(x) = x3 + 3x2

(a) Find the (open) intervals where f is increasing and where f is decreasing.

(b) Find all relative extrema (both x and y coordinates). Indicate whether it is a relative
maximum or relative minimum.

(c) Find the (open) intervals where f is concave up and where f is concave down

(d) Find all inflection point(s) (both x and y coordinates)

(e) Using the information from parts (a)-(d), graph the function. Label all relative
extrema and inflection point(s).

Solution

(a)
f ′(x) = 3x2 + 6x = 3x(x + 2)

So the critical numbers are x = 0,−2. Plotting these and testing the intervals we have

−2 0

+ − +

Thus f is increasing on (−∞,−2), (0,∞) and decreasing on (−2,0)
(b) There is a relative max at x = −2 and a relative min at x = 0. Plugging these into the

original function we have’

f(−2) = (−2)3 + 3(−2)2

= −8 + 12
= 4

f(0) = (0)3 + 3(0)
= 0

So the relative max is (−2,4) and the relative min is (0,0)
(c)

f ′′(x) = 6x + 6 = 6(x + 1)

So the point we need to plot is x = −1. Testing the intervals we have

−1

− +

So f is concave down on (−∞,−1) and concave up on (−1,∞)



(d) There is an inflection point at x = −1. Plugging this in gives

f(−1) = (−1)3 + 3(−1)2

= −1 + 3
= 2

So the inflection point is (−1,2)
(e)

-3 -2.5 -2 -1.5 -1 -0.5 0.5 1

0.5

1

1.5

2

2.5

3

3.5

4



(2) Consider the function f(x) = x3 − 6x2 + 9x

(a) Find the open intervals where f is increasing and the intervals where f is decreasing.

(b) Find both coordinates of any local extrema of the graph of f .

(c) Find the intervals where f is concave up, and the intervals where f is concave down.

(d) Find the both coordinates of any inflection point(s) of f .

Solution

(a)
f ′(x) = 3x2 − 12x + 9 = 3(x2 − 4x + 3) = 3(x − 3)(x − 1)

This gives critical points of x = 1,3. Testing the intervals we have

1 3

+ − +

Thus f is increasing on (−∞,1), (3,∞) and decreasing on (1,3)
(b) There is a relative max at x = 1 and a relative min at x = 3. Plugging these into the

original function we have

f(1) = 1 − 6 + 9
= 4

f(3) = 27 − 6(9) + 27
= 27 − 54 + 27
= 0

Thus the relative max is (1,4) and the relative min is (3,0)
(c)

f ′′(x) = 6x − 12 = 6(x − 2)
Plotting x = 2 and testing we have

2

− +

Thus f is concave down on (−∞,2) and concave up on (2,∞)
(d) The inflection point occurs at x = 2. Plugging it into the original we have

f(2) = 8 − 6(4) + 18
= 2

Thus the inflection point is (2,2)



(3) For the following functions, a) find the critical points, b) classify them as local maxima,
local minima, or neither, c) find where the function is increasing, d) find where the function
is concave up, and e) sketch the graph.

(a) y = x4 − 2x2

(b) y = x5 − 5x4

Solution

(a) Let y = f(x)
(a)

f ′(x) = 4x3 − 4x

f ′(x) = 0⇔ 4x(x2 − 1) = 0⇔ x = 0,±1

So the critical points are x = −1, x = 0, and x = 1
(b)

f ′′(−1) = 8 > 0, f ′′(0) = −4 < 0, and f ′′(1) = 8 > 0

f(−1) = −1, f(0) = 0, and f(1) = −1

Thus there are relative mins of -1 at x = ±1 and a relative max of 0 at x = 0.
(c) The intervals for f ′ are given by

-1 0 1

− + − +

Thus f is increasing on (−1,0), (1,∞) and decreasing on (−∞,−1), (0,1)
(d)

f ′′(x) = 12x2 − 4

f ′′(x) = 0⇔ 4(3x2 − 1) = 0⇔ x = ±
√

1

3

Plotting and testing the intervals we have

−
√

1
3

√
1
3

+ − +



Thus f is concave up on (−∞,−
√

1/3, (
√

1/3,∞) and concave down on (−
√

1/3,
√

1/3).

f
⎛
⎝
−
√

1

3

⎞
⎠
= 1

3
(1
3
− 2)

= 1

3
⋅ −5

3

= −5
9

f
⎛
⎝

√
1

3

⎞
⎠
= 1

3
⋅ −5

3

= −5
9

Therefore there are two inflection points of
⎛
⎝
−
√

1

3
,−5

9

⎞
⎠
and
⎛
⎝

√
1

3
,−5

9

⎞
⎠

(e) Using the above information we have:

 Chapter 4: Answers to Odd-Numbered Exercises A-19

 17.   19. 

1 2−1−2

1

Abs min
(1, −1)

Loc max
(0, 0)

Abs min
(−1, −1)

−1!
Î

3, −5!9
Infl

1!
Î

3, −5!9
Infl

x

y

y = x4 − 2x2

Q          R Q        R

3

4

9

15

21

27

321

(2, 16)

Abs max
(3, 27)

y = 4x3 − x4

Infl

Infl
(0, 0)

x

y

 21.   23. 

−100

−200

−300

543210−2
x

y

y = x5 − 5x4Loc max
(0, 0)

(3, −162)
Infl

(4, −256)
Loc min

0

Abs min

Infl

y = x + sin x

Abs max

(p, p)

(2p, 2p)

x

y

2p

p

2pp

 25. 

10

8

2

4

6

x

y

pp!2 2p3p!20

Q3p!2, 3
Î

3p!2R

Q2p, 2
Î

3p − 2R

Qp!2, 
Î

3p!2R
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Abs max

(0, −2)
Abs min y = 

Î

3x − 2 cos x

Q4p!3, 4
Î

3p!3 + 1R

Loc max

Q5p!3, 5
Î

3p!3 − 1R
Loc minInfl

 27. 

1

−1

x

y

p!2p!4 p3p!4(0, 0)
Loc min

Abs max
(p!4, 1!2) Infl

(p!2, 0)
Loc max

(p, 0)

(3p!4, −1!2)
Abs min

y = sin x cos x

 29.   31. 

−1

1 2 3−1−2−3

1

2

−2

x

y

y = x1!5

(0, 0)
Infl

Vert tan
at x = 0

−2

−1

1

1−1 2 3 4−2−3−4

2

(0, 0) 
Infl

x

y

y = x

Î

x2 + 1

 33.  35. 

−1
1−1 4 5

−5

x

y

Cusp, Loc max 
(0, 0)

y = 2x − 3x2!3

(1, −1)
Loc min

1−1

2

3

4
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x

y

Infl

 Q−1!2, 3/
3
Î
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 (1, 3!2) Loc max

y = x2!3  5–
2 − x
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Q    R

 73. a = -2, b = 4
 75. (a)  Absolute minimum occurs at x = p>3 with 

ƒ(p>3) = - ln 2, and the absolute maximum occurs at 
x = 0 with ƒ(0) = 0.

  (b)  Absolute minimum occurs at x = 1>2 and x = 2 with 
ƒ(1>2) = ƒ(2) = cos (ln 2), and the absolute maximum oc-
curs at x = 1 with ƒ(1) = 1.

 77. Minimum of 2 - 2 ln 2 ≈ 0.613706 at x = ln 2; maximum of 
1 at x = 0

 79. Absolute maximum value of 1>2e assumed at x = 1>2e

 83. Increasing; 
dƒ-1

dx
= 1

9 x-2>3
 85. Decreasing; 

df -1

dx
= -1

3 x-2>3
Section 4.4, pp. 238–241
 1. Local maximum: 3>2 at x = -1; local minimum: -3 at x = 2; 

point of inflection at (1>2, -3>4); rising on (-q, -1) and 
(2, q); falling on (-1, 2); concave up on (1>2, q); concave 
down on (-q, 1>2)

 3. Local maximum: 3 >4 at x = 0; local minimum: 0 at x = {1; 

  points of inflection at a- 23, 
323 4

4 b  and a23, 
323 4

4 b ; 

  rising on (-1, 0) and (1, q); falling on (-q, -1) and (0, 1);  
concave up on 1-q, - 232 and 123, q2; concave down on 1- 23, 232

 5. Local maxima: -2p
3 + 23

2  at x = -2p>3, p3 + 23
2  at 

  x = p>3; local minima: -  p3 - 23
2  at x = -p>3, 2p3 - 23

2  

  at x = 2p>3; points of inflection at (-p>2, -p>2), (0, 0), and 
(p>2, p>2); rising on (-p>3, p>3); falling on (-2p>3, -p>3) 
and (p>3, 2p>3); concave up on (-p>2, 0) and (p>2, 2p>3); 
concave down on (-2p>3, -p>2) and (0, p>2)

 7. Local maxima: 1 at x = -p>2 and x = p>2, 0 at x = -2p 
and x = 2p; local minima: -1 at x = -3p>2 and x = 3p>2, 
0 at x = 0; points of inflection at (-p, 0) and (p, 0); ris-
ing on (-3p>2, -p>2), (0, p>2), and (3p>2, 2p); falling on 
(-2p, -3p>2), (-p>2, 0), and (p>2, 3p>2); concave up on 
(-2p, -p) and (p, 2p); concave down on (-p, 0) and (0, p)

 9.   11. 

1

−1
1−1 2 3 4−2−3−4

−2

2

3

4

0

y = x2 − 4x + 3

(2, −1)
Abs min

x

y

1

1−1

4

5

2

Loc
max
(−1, 5)

(1, 1)
Loc min

Infl

y = x3 − 3x + 3

x

y

 13.   15. 

1

1−1 2−3

2

x

y

(0, −3)
Loc min y = −2x3 + 6x2 − 3

(2, 5) Loc max

Infl
(1, 1)

1

−1

1−1 2 3 4−2

2

3

−2

0

Infl
(2, 1)

y = (x − 2)3 + 1

x

y



(b) Let y = f(x) = x4(x − 5)
(a)

f ′(x) = 5x4 − 20x3 = 5x3(x − 4)

So the critical points are x = 0 and x = 4.
(b) Testing the intervals we have

0 4

+ − +

f(0) = 0 and f(4) = −256

So there is a relative max of 0 at x = 0 and a relative min of −256 at x = 4
(c) From the above number line we have that f is increasing on (−∞,0), (4,∞) and

decreasing on (0,4)
(d)

f ′′(x) = 20x3 − 60x2 = 20x2(x − 3)

This gives important points of x = 0 and x = 3. Testing the intervals we have

0 3

So f is concave down on (−∞,0), (0,3) and concave up on (3,∞).
(e) Putting the previous steps together we get

 Chapter 4: Answers to Odd-Numbered Exercises A-19

 17.   19. 

1 2−1−2

1

Abs min
(1, −1)

Loc max
(0, 0)

Abs min
(−1, −1)

−1!
Î

3, −5!9
Infl

1!
Î

3, −5!9
Infl

x

y

y = x4 − 2x2

Q          R Q        R

3

4

9

15

21

27

321

(2, 16)

Abs max
(3, 27)

y = 4x3 − x4

Infl

Infl
(0, 0)

x

y

 21.   23. 

−100

−200

−300

543210−2
x

y

y = x5 − 5x4Loc max
(0, 0)

(3, −162)
Infl

(4, −256)
Loc min

0

Abs min

Infl

y = x + sin x

Abs max

(p, p)

(2p, 2p)

x

y

2p

p

2pp

 25. 

10

8

2

4

6

x

y

pp!2 2p3p!20

Q3p!2, 3
Î

3p!2R

Q2p, 2
Î

3p − 2R

Qp!2, 
Î

3p!2R
Infl

Abs max

(0, −2)
Abs min y = 

Î

3x − 2 cos x

Q4p!3, 4
Î

3p!3 + 1R

Loc max

Q5p!3, 5
Î

3p!3 − 1R
Loc minInfl

 27. 

1

−1

x

y

p!2p!4 p3p!4(0, 0)
Loc min

Abs max
(p!4, 1!2) Infl

(p!2, 0)
Loc max

(p, 0)

(3p!4, −1!2)
Abs min

y = sin x cos x

 29.   31. 

−1

1 2 3−1−2−3

1

2

−2

x

y

y = x1!5

(0, 0)
Infl

Vert tan
at x = 0

−2

−1

1

1−1 2 3 4−2−3−4

2

(0, 0) 
Infl

x

y

y = x

Î

x2 + 1

 33.  35. 

−1
1−1 4 5

−5

x

y

Cusp, Loc max 
(0, 0)

y = 2x − 3x2!3

(1, −1)
Loc min

1−1

2

3

4

2 3−2
x

y

Infl

 Q−1!2, 3/
3
Î

4R

 (1, 3!2) Loc max

y = x2!3  5–
2 − x

(0, 0)
Cusp
Loc min

Q    R

 73. a = -2, b = 4
 75. (a)  Absolute minimum occurs at x = p>3 with 

ƒ(p>3) = - ln 2, and the absolute maximum occurs at 
x = 0 with ƒ(0) = 0.

  (b)  Absolute minimum occurs at x = 1>2 and x = 2 with 
ƒ(1>2) = ƒ(2) = cos (ln 2), and the absolute maximum oc-
curs at x = 1 with ƒ(1) = 1.

 77. Minimum of 2 - 2 ln 2 ≈ 0.613706 at x = ln 2; maximum of 
1 at x = 0

 79. Absolute maximum value of 1>2e assumed at x = 1>2e

 83. Increasing; 
dƒ-1

dx
= 1

9 x-2>3
 85. Decreasing; 

df -1

dx
= -1

3 x-2>3
Section 4.4, pp. 238–241
 1. Local maximum: 3>2 at x = -1; local minimum: -3 at x = 2; 

point of inflection at (1>2, -3>4); rising on (-q, -1) and 
(2, q); falling on (-1, 2); concave up on (1>2, q); concave 
down on (-q, 1>2)

 3. Local maximum: 3 >4 at x = 0; local minimum: 0 at x = {1; 

  points of inflection at a- 23, 
323 4

4 b  and a23, 
323 4

4 b ; 

  rising on (-1, 0) and (1, q); falling on (-q, -1) and (0, 1);  
concave up on 1-q, - 232 and 123, q2; concave down on 1- 23, 232

 5. Local maxima: -2p
3 + 23

2  at x = -2p>3, p3 + 23
2  at 

  x = p>3; local minima: -  p3 - 23
2  at x = -p>3, 2p3 - 23

2  

  at x = 2p>3; points of inflection at (-p>2, -p>2), (0, 0), and 
(p>2, p>2); rising on (-p>3, p>3); falling on (-2p>3, -p>3) 
and (p>3, 2p>3); concave up on (-p>2, 0) and (p>2, 2p>3); 
concave down on (-2p>3, -p>2) and (0, p>2)

 7. Local maxima: 1 at x = -p>2 and x = p>2, 0 at x = -2p 
and x = 2p; local minima: -1 at x = -3p>2 and x = 3p>2, 
0 at x = 0; points of inflection at (-p, 0) and (p, 0); ris-
ing on (-3p>2, -p>2), (0, p>2), and (3p>2, 2p); falling on 
(-2p, -3p>2), (-p>2, 0), and (p>2, 3p>2); concave up on 
(-2p, -p) and (p, 2p); concave down on (-p, 0) and (0, p)

 9.   11. 

1

−1
1−1 2 3 4−2−3−4

−2

2

3

4

0

y = x2 − 4x + 3

(2, −1)
Abs min

x

y

1

1−1

4

5

2

Loc
max
(−1, 5)

(1, 1)
Loc min

Infl

y = x3 − 3x + 3

x

y

 13.   15. 

1

1−1 2−3

2

x

y

(0, −3)
Loc min y = −2x3 + 6x2 − 3

(2, 5) Loc max

Infl
(1, 1)

1

−1

1−1 2 3 4−2

2

3

−2

0

Infl
(2, 1)

y = (x − 2)3 + 1

x

y



(4) For each of the following functions, determine the critical points, inflection points, relative
and absolute extrema, intervals where the function is increasing, decreasing, concave up
and down, vertical and horizontal asymptotes, and sketch the graph.

(a) f(x) = 2 + x
x − 1

(b) f(x) = x4 − 4x3 + 7 on [−1,4]
(c) f(x) = 2 + 2x − 3x2/3 on [−1,2]

Solution

(a)

f ′(x) = (x − 1)(1) − (2 + x)(1)(x − 1)2

= x − 1 − 2 − x
(x − 1)2

= − 3

(x − 1)2

f ′(x) is never zero and is undefined at x = 1. Since f ′(x) < 0 everywhere else we have
that f is decreasing on (−∞,1), (1,∞) and there are no extrema.

f ′′(x) = d

dx
(−3(x − 1)−2)

= 6(x − 1)−3

= 6

(x − 1)3

Thus there is one important number at x = 1. Testing the intervals we have

1

So the function is concave down on (−∞,1) and concave up on (1,∞). Since the
function is undefined at x = 1, there are no inflection points.

lim
x→±∞

f(x) = lim
x→±∞

2 + x
x − 1

= lim
x→±∞

2/x + 1
1 − 1/x

= 1



So there is a horizontal asymptote of y = 1. Since f is undefined at x = 1, that is the
vertical asymptote.. Putting this all together we have the following graph:



(b)
f ′(x) = 4x2 − 12x2 = 4x2(x − 3)

Thus there are critical numbers of x = 0,3. Testing the intervals we have

0 3-1 4

Thus f is decreasing on [−1,0), (0,3) and increasing on (3,4]. Further, there is a
relative minimum at x = 3

f ′′(x) = 12x2 − 24x = 12x(x − 2)

Thus there is important numbers of x = 0 and x = 2. Testing the intervals we have

0 2-1 4

Thus f is concave up on [−1,0), (2,4] and concave down on (0,2). Further, there is
an inflection point at x = 0 and x = 2.

f(−1) = (−1)4 − 4(−1)3 + 7
= 1 + 4 + 7
= 12

f(0) = (0)4 − 4(0)3 + 7
= 7

f(3) = (3)4 − 4(3)3 + 7
= 81 − 108 + 7
= −20

f(4) = (4)4 − 4(4)4 + 7
= 7



There are no asymptotes. Putting this together we get:



(c)

f ′(x) = 2 − 2x−1/3

= 2 − 2

x1/3

= 2x1/3 − 2
x1/3

= 2(x1/3 − 1)
x1/3

Thus there are two critical numbers: x = 0,1. Testing the intervals we have

0 1-1 2

Thus f is increasing on [−1,0), (1,2] and decreasing on (0,1). Further, there is a
relative maximum at x = 0 and a relative minimum at x = 1.

f ′′(x) = 2

3
x−4/3

Thus there is one important number x = 0 and everywhere else f ′′(x) < 0, thus f is
concave up on [−1,0), (0,2]. There are no inflection points.

f(0) = 2 + 2(0) − 3(0)2/3

= 2

f(1) = 2 + 2(1) − 3(1)2/3

= 2 + 2 − 3
= 1

f(−1) = 2 + 2(−1) − 3(−1)2/3

= −3

f(2) = 2 + 2(2) − 3(2)2/3

= 2 + 4 − 3 3
√
4

= 6 − 3 3
√
4



Thus the absolute minimum is (−1,−3) and the absolute maximum is (0,2). Putting
this together we have



(5) Consider the function f(x) = 1

3
x3 − 9x

(a) Find the intervals where f is increasing and the intervals where f is decreasing.

(b) Find both coordinates of the local max and local min of the graph of f .

(c) Find the intervals where f is concave up, and the intervals where f is concave down.

(d) Find both coordinates of the inflection point of f .

Solution

(a)
f ′(x) = x2 − 9

f ′(x) = 0⇔ x2 − 9 = 0
⇔ (x − 3)(x + 3) = 0
⇔ x = ±3

Testing the intervals we have

-3 3

+ − +

Thus f is increasing on (−∞,−3), (3,∞) and decreasing on (−3,3).

(b)

f(−3) = 1

3
(−3)3 − 9(−3)

= −27
3
+ 27

= −9 + 27
= 18

f(3) = 1

3
(3)3 − 9(3)

= 27

3
− 27

= 9 − 27
= −18

Thus there is a local max at (−3,18) and a local min at (3,−18).



(c)
f ′′(x) = 2x

Thus there is only one important point: x = 0. Testing the intervals we have:

0

− +

So f is concave up on (0,∞) and concave down on (−∞,0).

(d)

f(0) = 1

3
(0)3 − 9(0)

= 0

So the infection point is (0,0).



(6) Consider the function f(x) = x4 − 4x3

(a) Find the open intervals where f is increasing and the intervals where f is decreasing.

(b) Find both coordinates of any local extrema of the graph of f .

(c) Find the intervals where f is concave up, and the intervals where f is concave down.

(d) Find both coordinates of the inflection points of f .

(e) Using the above information, sketch the graph of y = f(x) on the coordinate axes
below. You must label both coordinates of any local extrema and inflection points
on your graph. (The graph does not need to be to scale.)

Solution

(a)
f ′(x) = 4x3 − 12x2 = 4x2(x − 3)

Thus there are two critical numbers: 0 and 3. Testing the intervals we have

0 3

Thus f is increasing on (3,∞) and decreasing on (−∞,0), (0,3).
(b) There is a relative min at x = 3

f(3) = (3)4 − 4(3)3

= 33(3 − 4)
= 27(−1)
= −27

So the relative min is (3,−27)
(c)

f ′′(x) = 12x2 − 24x = 12x(x − 2)
Thus there are two important numbers: 0 and 2. Testing the intervals we have

0 2

+ − +

Thus f is concave up on (−∞,0), (2,∞) and concave down on (0,2).
(d) There are inflection points at x = 0 and x = 2

f(0) = (0)4 − 4(0)3

= 0

f(2) = (2)4 − 4(2)3

= 23(2 − 4)
= 8(−2)
= −16

So the inflection points are (0,0) and (2,−16)



(e)

(0,0)

(2,-16)

(3,-27)



(7) Given

f(x) = (x + 1)(x + 3)
x2 + 3 f ′(x) = 4(3 − x2)

(x2 + 3)2 f ′′(x) = 8x(x2 − 9)
(x2 + 3)3

(a) List all x and y intercepts

(b) Find the intervals of increase and decrease

(c) Find the intervals of concavity and any inflection points.

(d) Find any asymptoptes

(e) Sketch the graph

Solution

(a)
f(x) = 0⇔ x = −1,−3

f(0) = 3

3
= 1

(b) f ′(x) = 0 when 3 − x2 = 0

3 − x2 = 0⇔ x2 = 3⇒ x = ±
√
3

Potting this on a number line gives

−
√
3

√
3

− + −

f increases on (−
√
3,
√
3) and decreases on (−∞,−

√
3), (
√
3,∞)

(c) f ′′(x) = 0 when 8x(x2 − 9) = 0

8x(x2 − 9) = 0⇒ x = 0,±3

-3 0 3

− + − +

f is concave up on (−3,0), (3,∞) and concave down on (−∞,−3), (0,3)
There are inflection points at x = −3,0,3

(d) f(x) is never undefined so there are no vertical asymptotes.

lim
x→±∞

(x + 1)(x + 3)
x2 + 3 = lim

x→±∞

(1 + 1/x)(1 + 3/x)
1 + 3/x2

= (1 + 0)(1 + 0)
1 + 0

= 1

So there is a horizontal asymptote of y = 1



(e)



Riemann Sums

(1) Use mid-points to approximate the area above the x-axis and under x2 + 6 from x = 0 to
x = 6 using 3 rectangles.

Solution Splitting the interval into 3 subintervals will give us this

0 2 4 6

So each rectangle has width 2. Finding the midpoint of each interval will give us

0 1 2 3 4 5 6

Thus the area is approximately

M3 = 2f(1) + 2f(3) + 2f(5)
= 2(12 + 6) + 2(33 + 6) + 2(52 + 6)
= 2(7) + 2(15) + 2(31)
= 14 + 30 + 62
= 106

(2) Approximate the integral of f(x) = x2 on the interval [0,4] by using 4 equal subintervals
and evaluating the function at midpoints.

Solution

∆x = 4 − 0
4
= 1

Using midpoints we have

Area = f (1
2
) + f (3

2
) + f (5

2
) + f (7

2
)

= 1

4
+ 3

4
+ 9

4
+ 25

4
+ 49

4

= 84

4

= 21



(3) Use mid-points to approximate the area above the x-axis and under x2 + 6 from x = 0 to
x = 6 using 3 rectangles.

Solution

∆x = 6 − 0
3
= 2

So our midpoints are 1,3,5

Area ≈ 2(f(1) + f(3) + f(5))
= 2(7 + 15 + 31)
= 2(53)
= 106



(4) For each of the following functions over the given intervals, calculate the Riemann sum
using a) left-hand endpoint, b) right-hand endpoint, and c) midpoint of the subinterval,
with four subintervals of equal length.

(a) f(x) = x2 − 1, [0,2]
(b) f(x) = sinx, [−π,π]

Solution

(a)

∆x = 2 − 0
4
= 1

2

x0 = 0, x1 =
1

2
, x2 = 1, x3 =

3

2
, x4 = 2

a)

Riemann Sum =
3

∑
i=0

f(xi)∆x

= 1

2
(f(0) + f (1

2
) + f(1) + f (3

2
))

= 1

2
(�0 − 1 +

1

4
− 1 + �1 − �1 +

9

4
− 1)

= 1

2
(−4 + 1 − 4 + 9 − 4

4
)

= 1

2
⋅ −1
2

= −1
4

b)

Riemann Sum =
4

∑
i=1

f(xi)∆x

= 1

2
(f (1

2
) + f(1) + f (3

2
) + f(2))

= 1

2
(1
4
− 1 + �1 − �1 +

9

4
− 1 + 4 − 1)

= 1

2
(1 − 4 + 9 − 4 + 16 − 4

4
)

= 1

2
(14
4
)

= 7

4



c)

Riemann Sum =
n

∑
i=1

f (xi + xi−1
2

)∆x

= 1

2
(f (1

4
) + f (3

4
) + f (5

4
) + f (7

4
))

= 1

2
( 1

16
− 1 + 9

16
− 1 + 25

16
− 1 + 49

16
− 1)

= 1

2
(1 − 16 + 9 − 16 + 25 − 16 + 49 − 16

16
)

= 1

2
(20
16
)

= 10

16

= 5

8

(b)

∆x = π − (−π)
4

= 2π

4
= π

2

x0 = −π, x1 = −
π

2
, x2 = 0, x3 =

π

2
, x4 = π

(a)

Riemann Sum =
3

∑
i=0

f(xi)∆x

= π

2
(f(−π) + f (−π

2
) + f(0) + f (π

2
))

= π

2
(0 − 1 + 0 + 1)

= 0

(b)

Riemann Sum =
4

∑
i=1

f(xi)∆x

= π

2
(f (−π

2
) + f(0) + f (π

2
) + f(π))

= π

2
(−1 + 0 + 1 + 0)

= 0



(c)

Riemann Sum =
n

∑
i=1

f (xi + xi−1
2

)∆x

= π

2
(f (−3π

4
) + f (−π

4
) + f (π

4
) + f (3π

4
))

= π

2
(−
√
2

2
−
√
2

2
+
√
2

2
+
√
2

2
)

= 0



(5) Using 4 rectangles of equal length and the following rules find Riemann sums estimates
for f(x) = −x2 + 16 from x = −2 to x = 2 (i.e. to estimate ∫ 2

−2(−x2 + 16) dx).

(a) Left-hand endpoints

(b) Right-hand endpoints

(c) Midpoints

Solution

∆x = 2 − (−2)
4

= 1

x0 = −2, x1 = −1, x2 = 0, x3 = 1, x4 = 2

(a)

∫
2

−2
(−x2 + 16) dx ≈∆x(f(−2) + f(−1) + f(0) + f(1))

= 1 [(−(−2)2 + 16) + (−(−1)2 + 16) + (−(0)2 + 16) + (−(1)2 + 16)]
= (−4 + 16) + (−1 + 16) + (0 + 16) + (−1 + 16)
= 12 + 15 + 16 + 15
= 58

(b)

∫
2

−2
(−x2 + 16) dx ≈∆x(f(−2) + f(−1) + f(0) + f(1))

= 1 [((−(−1)2 + 16) + (−(0)2 + 16) + (−(1)2 + 16) + (−(2)2 + 16)]
= (−1 + 16) + (0 + 16) + (−1 + 16) + (−4 + 16)
= 15 + 16 + 15 + 12
= 58

(c)

∫
2

−2
(−x2 + 16) dx ≈∆x [f (−2 − 1

2
) + f (−1 + 0

2
) + f (0 + 1

2
) + f (1 + 2

2
)]

= 1 [f (−3
2
) + f (−1

2
) + f (1

2
) + f (3

2
)]

= (−(−3
2
)
2

+ 16) + (−(−1
2
)
2

+ 16) + (−(1
2
)
2

+ 16) + (−(3
2
)
2

+ 16)

= (−9
4
+ 16) + (−1

4
+ 16) + (−1

4
+ 16) + (−9

4
+ 16)

= −20
4
+ 64

= 64 − 5
= 59



Linear Approximations, Differentials, L’Hospital’s Rule, and Newton’s Method

(1) Use linear approximation to estimate the following numbers (you do not need to simplify
your answers):

(a) (.95)10

(b)
√
10

(c)
1

101
(using that 1/100 = 0.01)

(d) 291/3

Solution

(a) Let f(x) = x10 ⇒ f ′(x) = 10x9, a = 1

L(x) = f(a) + f ′(a)(x − a)
= (1)10 + 10(1)9(x − 1)
= 1 + 10(x − 1)

(.95)1 ≈ L(.95)
= 1 + 10(.95 − 1)
= 1 + 10(−.05)
= 1 − 0.5
= 0.5

(b) Let f(x) =√x⇒ f ′(x) = 1
2
√
x
, a = 9

L(x) = f(a) + f ′(a)(x − a)

=
√
9 + 1

2
√
9
(x − 9)

= 3 + 1

6
(x − 9)

√
10 ≈ L(10)

= 3 + 1

6
(10 − 9)

= 3 + 1

6

= 19

6



(c) Let f(x) = 1
x ⇒ f ′(x) = − 1

x2 , a = 100

L(x) = f(a) + f ′(a)(x − a)

= 1

100
− 1

(100)2 (x − 100)

= 0.01 − 0.0001(x − 100)

1

101
≈ L(101)

= 0.01 − 0.0001(101 − 100)
= 0.01 − 0.0001
= 0.0099

= 99

10000

(d) Let f(x) = x1/3 ⇒ f ′(x) = 1
3x2/3 , a = 27

L(x) = f(a) + f ′(a)(x − a)

= 271/3 + 1

3(27)2/3
(x − 27)

= 3 + 1

3(9)(x − 27)

= 3 + 1

27
(x − 27)

291/3 ≈ L(29)

= 3 + 1

27
(29 − 27)

= 3 + 2

27

= 83

27



(2) Use linear approximation to find the following approximations.

(a)
1

0.9
given that

1

1
= 1

(b)
3
√
8.5 given that

3
√
8 = 2

(c)
1.3

1 + 1.3 given that
1

1 + 1 =
1

2
.

Solution

(a) Let f(x) = 1

x
then f ′(x) = −x−2. Choosing a = 1 we have

f(0.9) ≈ f(1) + f ′(1)(0.9 − 1)
= 1 + (−1)(−0.1)
= 1 + 0.1
= 1.1

(b) Let f(x) = 3
√
x then f ′(x) = 1

3
x−2/3 = 1

3x2/3
. Choosing a = 8 we have

f(8.5) ≈ f(8) + f ′(8)(8.5 − 8)

= 3
√
8 + 1

3( 3
√
8)2
⋅ 1
2

= 2 + 1

3(4) ⋅
1

2

= 2 + 1

24

= 49

24

(c) Let f(x) = x

1 + x then

f ′(x) ≈ (1 + x)(1) − x(1)(1 + x)2

= 1 +�x −�x
(1 + x)2

= 1

(1 + x)2



Choosing a = 1 we have

f(1.3) ≈ f(1) + f ′(1)(1.3 − 1)

= 1

2
+ 1

4
(0.3)

= 1

2
+ 1

4
⋅ 3
10

= 1

2
+ 3

40

= 23

40



(3) Approximate
√
37 using linear approximation. (Recall the formula for linear approxima-

tion is f(x) ≈ f(x0) + f ′(x0)(x − x0))
Solution Let f(x) =√x = x1/2 ⇒ f ′(x) = 1

2
x−1/2 = 1

2
√
x

Choose x0 = 36

f(x0) =
√
36

= 6

f ′(x0) =
1

2
√
36

= 1

2(6)

= 1

12

Thus we have

f(37) =
√
37

≈ f(36) + f ′(36)(37 − 36)

= 6 + 1

12



(4) Use Newton’s method to find the positive fourth root of 2 by solving the equation x4−2 = 0.
Start with x0 = 1 and find x2.

Solution
f(x) = x4 − 2⇒ f ′(x) = 4x3

x1 = 1 −
f(1)
f ′(1)

= 1 − −1
4

= 5

4

x2 =
5

4
− f(5/4)
f ′(5/4)

= 5

4
− (625/256) − 2(500/64)

= 5

4
− 625 − 512

2000

= 5

4
− 113

2000

= 2387

2000



(5) Evaluate the following limits:

(a) lim
x→∞

5x2 − 3x
7x2 + 1

(b) lim
x→0

8x2

cosx − 1
(c) lim

x→∞
(ln(2x) − ln(x + 1))

Solution

(a)

lim
x→∞

5x2 − 3x
7x2 + 1 →

∞
∞ Indeterminate Form

lim
x→∞

5x2 − 3x
7x2 + 1

L′H= lim
x→∞

10x − 3
14x

(→ ∞∞)

L′H= lim
x→∞

10

14

= 10

14

= 5

7

(b)

lim
x→0

8x2

cosx − 1 →
0

0
Indeterminate Form

lim
x→0

8x2

cosx − 1
L′H= lim

x→0

16x

− sinx (→
0

0
)

L′H= lim
x→0

16

− cosx

= 16

− cos 0

= 16

−1
= −16



(c)
lim
x→∞
(ln(2x) − ln(x + 1))→∞−∞ Indeterminate Form

lim
x→∞
(ln(2x) − ln(x + 1)) = lim

x→∞
ln

2x

x + 1

= ln lim
x→∞

2x

x + 1
L′H= ln lim

x→∞

2

1

= ln 2



(6) Evaluate the following limits:

(a) lim
x→∞

x2 + 8
6x2 − x

(b) lim
x→1

x2 − 1
x − 1

(c) lim
x→0

1 − cosx
x2

Solution

(a)

lim
x→∞

x2 + 8
6x2 − x →

∞
∞ Indeterminate Form

lim
x→∞

x2 + 8
6x2 − x

L′H= lim
x→∞

2x

12x − 1 (→
∞
∞)

L′H= lim
x→∞

2

12

= 2

12

= 1

6

(b)

lim
x→1

x2 − 1
x − 1 →

0

0
Indeterminate Form

lim
x→1

x2 − 1
x − 1

L′H= lim
x→1

2x

1

= 2

1

= 2

(c)

lim
x→0

1 − cosx
x2

→ 0

0
Indeterminate Form

lim
x→0

1 − cosx
x2

L′H= lim
x→0

sinx

2x
(→ 0

0
)

L′H= lim
x→0

cosx

2

= cos 0

2

= 1

2



Position, Velocity, Acceleration Problems

(1) A particle’s acceleration is given by a(t) = 6t + 2. Its velocity at 1 sec is
−1 m/s. Its initial position is given by s(0) = 5. Find the position function s(t).

Solution

v(t) = ∫ a(t) dt

= ∫ (6t + 2) dt

= 6( t
2

2
) + 2t +C

= 3t2 + 2t +C

We are given that v(1) = −1

v(1) = −1⇔ 3 + 2 +C = −1
⇔ 5 +C = −1
⇔ C = −6
⇒ v(t) = 3t2 + 2t − 6

s(t) = ∫ v(t) dt

= ∫ (3t2 + 2t − 6) dt

= 3( t
3

3
) + 2( t

2

2
) − 6t +D

= t3 + t2 − 6t +D

We are given that s(0) = 5

s(0) = 5⇔ 0 + 0 − 0 +D = 5
⇔D = 5

⇒ s(t) = t3 + t2 − 6t + 5



(2) An object moves along the x-axis with velocity v(t) = 2t − 2. Its initial position was
x(0) = 5. Find the position of the object at time t = 3.

Solution

x(t) = ∫ v(t) dt

= ∫ (2t − 2) dt

= t2 − 2t +C

x(0) = 5⇔ 5 = (0)2 − 2(0) +C
⇔ C = 5
⇔ x(t) = t2 − 2t + 5

x(3) = (3)2 − 2(3) + 5
= 9 − 6 + 5
= 8

(3) If a particle’s motion is given by the equation s(t) = 4t3 − 10t2 + 5, find its velocity and
acceleration as functions of t. What is its speed at t = 1

Solution
v(t) = s′(t) = 12t2 − 20t
a(t) = v′(t) = 24t − 20

speed∣t=1 = ∣v(1)∣ = ∣12 − 20∣ = ∣−8∣ = 8

(4) The acceleration of an object is given by
3t

8
find the position given that v(4) = 3 and

s(4) = 4.

Solution

a(t) = 3

8
t⇒ v(t) = 3

8
( t

2

2
) +C = 3

16
t2 +C

v(4) = 3

16
(16) +C = 3 +C = 3⇒ C = 0⇒ v(t) = 3

16
t2

v(t) = 3

16
t2 ⇒ s(t) = 3

16
( t

3

3
) +D = 1

16
t3 +D

s(4) = 1

16
(64) +D = 4 +D⇒D = 0⇒ s(t) = 1

16
t3



(5) A ball is thrown from a cliff that is 6 feet from the ground (s(0) = 6) with initial velocity
100ft/sec (v(0) = 100). If the acceleration due to gravity is −32 ft/sec2 (a(t) = −32), find
the equation s(t) for the position of the ball at time t.

Solution This is an initial value problem where we have

a(t) = −32, v(0) = 100, s(0) = 6

v(t) = ∫ a(t) dt

= ∫ −32 dt

= −32t +C

s(t) − ∫ v(t) dt

= ∫ (−32t +C) dt

= −32( t
2

2
) +Ct +D

= −16t2 +Ct +D

Since v(0) = 100 we have

v(0) = C = 100⇒ v(t) = −32t + 100 and s(t) = −16t2 + 100t +D

And since s(0) = 6 we have

s(0) =D = 6⇒ s(t) = −16t2 + 100t + 6



Antiderivatives and Integrals

(1) Find the following (definite and indefinite) integrals.

(a) ∫
4

1

x + 4√
x

dx

(b) ∫ e5x dx

(c) ∫ x
√
4 + x2 dx

(d) ∫
e

1
(5x4 − 1

x
) dx

(e) ∫
3

0

√
9 − x2 dx

Solution

(a)

∫
4

1

x + 4√
x

dx = ∫
4

1
(x1/2 + 4x−1/2) dx

= (2
3
x3/2 + 8x1/2)∣

4

1

= 16

3
+ 16 − 2

3
− 8

= 38

3

(b) Let u = 5x⇒ du = 5dx

∫ e5x dx = 1

5
∫ eu du

= 1

5
eu +C

= 1

5
e5x +C

(c) Let u = 4 + x2 ⇒ du = 2xdx

∫ x
√
4 + x2 dx = 1

2
∫ u1/2 du

= 1

2
⋅ 2
3
u3/2 +C

= 1

3
(4 + x2)3/2 +C

(d)

∫
e

1
(5x4 − 1

x
) dx = (x5 − ln ∣x∣)∣e

1

= (e5 − 1) − (1 − 0)
= e5 − 2



(e) Notice that y =
√
9 − x2 is the graph of a circle of radius 3. Since the integral goes

from x = 0 to x = 3, it is a quarter of the circle. Thus

∫
3

0

√
9 − x2 dx = 1

4
(9π)



(2) Find the following (definite and indefinite) integrals.

(a) ∫
4

1

2 − 5x2 − 3x√
x

dx (b) ∫ xex
2
+2dx

(c) ∫
sin (lnx)

x
dx

Solution

(a)

∫
4

1

2 − 5x2 − 3x√
x

dx = ∫
4

1
(2x−1/2 − 5x3/2 − 3x1/2)dx

= (4x1/2 − 2x5/2 − 2x3/2)∣
4

1

= (4 ⋅ 41/2 − 2 ⋅ 45/2 − 2 ⋅ 43/2) − (4 − 2 − 2)
= 4 ⋅ 2 − 2 ⋅ 25 − 2 ⋅ 23

= −72

(b) Let u = x2 + 2⇒ du = 2xdx

∫ xex
2
+2dx = 1

2
∫ eudu

= 1

2
eu +C

= 1

2
ex

2
+2 +C

(c) Let u = lnx⇒ du = 1
xdx

∫
sin (lnx)

x
dx = ∫ sinu du

= − cosu +C
= − cos (lnx) +C



(3) Find the following integrals:

(a) ∫
1 + 2t3
4t

dt

(b) ∫ tan4 x sec2 x dx

(c) ∫
e/2

1/2

ln (2x)
x

dx

Solution

(a)

∫
1 + 2t3
4t

dt = ∫ (
1

4t
+ 2t3

4t
) dt

= 1

4
∫

1

t
dt + 1

2
∫ t2 dt

= 1

4
ln ∣t∣ + 1

6
t3 +C

(b) Let u = tanx⇒ du = sec2 xdx

∫ tan4 x sec2 x dx∫ u4 du

= u5

5
+C

= tan5 x

5
+C

(c) Let u = ln(2x)⇒ du = 2

2x
dx = 1

x
dx

∫
e/2

1/2

ln (2x)
x

dx = ∫
1

0
∫ u du

= u2

2
∣
1

0

= 1

2
− 0

= 1

2



(4) Find the most general antiderivative for the following. Check your answer by differentia-
tion.

(a) ∫ (
1

x2
− x2 − 1

3
)dx (b) ∫ 2x(1 − x−3) dx

Solution

(a)

∫ (
1

x2
− x2 − 1

3
) dx = ∫ (x−2 − x2 −

1

3
) dx

= x−2+1

−2 + 1 −
x2+1

2 + 1 −
1

3
⋅ x

0+1

0 + 1 +C

= x−1

−1 −
x3

3
− x

3
+C

= −1
x
− x3

3
− x

3
+C

Check:
d

dx
(−1

x
− x3

3
− x

3
+C) = 1

x2
− x2 − 1

3

(b)

∫ 2x(1 − x−3) dx = ∫ (2x − 2x−2) dx

= 2 ⋅ x
1+1

1 + 1 − 2 ⋅
x−2+1

−2 + 1 +C

= 2 ⋅ x
2

2
− 2 ⋅ x

−1

−1 +C

= x2 + 2

x
+C

Check:
d

dx
(x2 + 2

x
+C) = 2x − 2

x2
= 2x(1 − x−3)



(5) Evaluate the following integrals

(a) ∫
4

1
(
√
x

2
+ 2√

x
) dx (b) ∫

2

1
x−3(x + 1) dx

(c) ∫
π/3

0
2 sec2 x dx

Solution

(a)

∫
4

1
(
√
x

2
+ 2√

x
) dx = ∫

4

1
(1
2
x1/2 + 2x−1/2) dx

= [1
2
(x

3/2

3/2 ) + 2(
x1/2

1/2 )]∣
4

1

= (1
2
⋅ 2
3
x3/2 + 2 ⋅ (2x1/2))∣

4

1

= (1
3
x3/2 + 4x1/2)∣

4

1

= (1
3
(4)3/2 + 4(4)1/2) − (1

3
(1)3/2 + 4(1)1/2)

= (8
3
+ 8) − (1

3
+ 4)

= 8

3
+ 8 − 1

3
− 4

= 7

3
+ 4

= 19

3



(b)

∫
2

1
x−3(x + 1) dx = ∫

2

1
(x−2 + x−3) dx

= (x
−1

−1 +
x−2

−2 )∣
2

1

= (−1
x
− 1

2x2
)∣

2

1

= (−1
2
− 1

8
) − (−1

1
− 1

2
)

= −1
2
− 1

8
+ 1 + 1

2

= 7

8

(c)

∫
π/3

0
2 sec2 x dx = 2 tanx∣π/30

= 2 tan(π/3) − 2 tan0

= 2
√
3



(6) Calculate the following integrals.

(a) ∫ (
x2 + 7x5 + 5

x2
) dx

(b) ∫
2

1
(x2 + 3x − 1) dx

(c) ∫
4

0

x√
x2 + 9

dx

Solution

(a)

∫ (
x2 + 7x5 + 5

x2
) dx = ∫ (

x2

x2
+ 7x5

x2
+ 5

x2
) dx

= ∫ (1 + 7x3 + 5x−2) dx

= x + 7(x
4

4
) + 5(x

−1

−1 ) +C

= x + 7x4

4
− 5

x
+C

(b)

∫
2

1
(x2 + 3x − 1) dx = (x

3

3
+ 3(x

2

2
) − x)∣

2

1

= (x
3

3
+ 3x2

2
− x)∣

2

1

= (8
3
+ 12

2
− 2) − (1

3
+ 3

2
− 1)

= 8

3
+ 6 − 2 − 1

3
− 3

2
+ 1

= 7

3
+ 5 − 3

2

= 14

6
+ 30

6
− 9

6

= 35

6

(c)

u = x2 + 9⇒ du = 2x dx⇒ dx = du

2x

Changing the bounds we have

x = 0⇒ u = 02 + 9 = 9 and u = 4⇒ u = 42 + 9 = 25



∫
4

0

x√
x2 + 9

dx = ∫
25

9

�x√
u
⋅ du
2�x

= 1

2
∫

25

9
u−1/2 du

�
��
1

2
(u

1/2

�
�1/2
)∣

25

9

=
√
u∣259

=
√
25 −
√
9

= 5 − 3
= 2



(7) Find the following integrals:

(a) ∫
4

0
2(
√
t − t) dt

(b) ∫
1 + 2t3
t3

dt

(c) ∫
π

0
2 sinx cos2 x

(d) ∫
x

(x2 + 2)3

Solution

(a)

∫
4

0
2(
√
t − t) dt = ∫

4

0
(2
√
t − 2t) dt

= ∫
4

0
(2t1/2 − 2t) dt

= [2( t
3/2

3/2) − 2(
t2

2
)]

4

0

= [2 ⋅ 2
3
t3/2 − t2]

4

0

= (4
3
t3/2 − t2)∣

4

9

= (4
3
(4)3/2 − (4)2) − (4

3
(0) − (0)2)

= 4

3
(2)3 − 16

= 4

3
(8) − 16

= 32

3
− 48

3

= −16
3



(b)

∫
1 + 2t3
t3

dt = ∫ (
1

t3
+ 2t3

t3
) dt

= ∫ (t−3 + 2) dt

= − t
−2

2
+ 2t +C

(c)

u = cosx⇒ du = − sinx dx⇒ dx = − sinx
du

Since this is a definite integral we have to change the bounds.

x = 0⇒ u = cos(0) = 1 and x = π⇒ u = cos(π) = −1

∫
π

0
2 sinx cos2 x = ∫

−1

1
2���sinxu2 ⋅ du

−���sinx

= −2∫
−1

1
u2 du

= −2(u
3

3
)∣
−1

1

= −2((−1)
3

3
− (1)

3

3
)

= −2(−1
3
− 1

3
)

= −2(−2
3
)

= 4

3



(d)

u = x2 + 2⇒ du = 2x dx⇒ dx = du

2x

∫
x

(x2 + 2)3 = ∫
�x

u3
⋅ du
2�x

= 1

2
∫ u−3 du

= 1

2
⋅ u
−2

−2 +C

= −1
4
u−2 +C

= −1
4
(x2 + 2)−2 +C



(8) Solve the initial value problem

(a)
dy

dx
= 1

2
√
x
, y(4) = 0

(b)
ds

dt
= 12t(3t2 − 1)2, s(1) = 3

Solution

(a)
dy

dx
= 1

2
√
x
= 1

2
x−1/2

y = 1

2
⋅ x

1/2

1/2 +C = x
1/2 +C

y(4) = 2 +C = 0⇒ C = −2⇒ y = x1/2 − 2

(b)
ds

dt
= 12t(9t4 − 6t2 + 1) = 108t5 − 72t3 + 12t

s = 108( t
6

6
) − 72( t

4

4
) + 12( t

2

2
) +C = 18t6 − 18t4 + 6t2 +C

s(1) = 18 − 18 + 6 +C = 3⇒ C = −3⇒ s = 18t6 − 18t4 + 6t2 − 3



(9) Solve the initial value problem
dy

dx
= 9x2 − 4x + 5, y(−1) = 0

Solution

y = ∫ (9x2 − 4x + 5) dx

= 9(x
3

3
) − 4(x

2

2
) + 5x +C

= 3x3 − 2x2 + 5x +C

Using the initial value we were given we have

y(−1) = 0⇔ 3(−1)3 − 2(−1)2 + 5(−1) +C = 0
⇔ −3 − 2 − 5 +C = 0
⇔ −10 +C = 0
⇔ C = 10

⇔ y = 3x3 − 2x2 + 5x + 10



(10) Solve the following initial value problems.

(a)
dr

dθ
= −π sinπθ, r(0) = 0

(b)
d3y

dx3
= 6; y′′(0) = −8, y′(0) = 0, y(0) = 5

Solution

(a)

r = ∫ (−π sin(πθ)) dθ = cos(πθ) +C

0 = cos(0) +C⇔ C = −1⇒ r = cos(πθ) − 1

(b)

y′′(x) = ∫ 6 dx = 6x +C

−8 = 0 +C⇔ C = −8⇒ y′′(x) = 6x − 8

y′(x) = ∫ (6x − 8) dx = 6 ⋅
x2

2
− 8 ⋅ x

0+1

0 + 1 = 3x
2 − 8x +C

0 = 0 − 0 +C⇔ C = 0⇒ y′(x) = 3x2 − 8x

y = ∫ (3x2 − 8x) dx = 3 ⋅
x3

3
− 8 ⋅ x

2

2
+C = x3 − 4x2 +C

5 = 0 − 0 +C⇔ C = 5⇒ y = x3 − 4x2 + 5


