Reference Sheet

Limits:

- The Squeeze Theorem: If $f(x) \le g(x) \le h(x)$ for x near a and $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, then $\lim_{x\to a} g(x) = L$
- $\lim_{x \to \pm \infty} (a_n x^n + a_{n-a} x^{n-a} + \dots + a_1 x + a_0) = \lim_{x \to \pm \infty} a_n x^n$
- $\lim_{x \to \infty} x^n = \infty$ and $\lim_{x \to -\infty} x^n = -\infty$, if $n > 0$ is odd
- $\lim_{x\to\pm\infty}\frac{1}{x^{\prime}}$ $\frac{1}{x^n} = 0$ for $n > 0$ • $\lim_{x \to \pm \infty} x^n = \infty$, if $n > 0$ is even • $\lim_{x \to \infty} e^x = \infty$ • $\lim_{x \to -\infty} e^x = 0$ • $\lim_{x \to \infty} e^{-x} = 0$ • $\lim_{x \to -\infty} e^{-x} = \infty$ • $\lim_{x \to 0^+} \ln x = -\infty$ • $\lim_{x \to \infty} \ln x = \infty$

The Intermediate Value Theorem: Suppose f is continuous on the interval [a, b] and L is a number strictly between $f(a)$ and $f(b)$. Then there exists at least one number c in (a, b) satisfying $f(x) = L$.

Derivative Formulas:

• $f'(a) = \lim_{h \to 0}$ $f(a+h) - f(a)$ $\frac{f(x)-f(a)}{h}$ OR $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ $x - a$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$ \bullet $\frac{d}{1}$ $\frac{d}{dx}$ $f(x)$ $\frac{g(x)}{g(x)}$ = $f'(x)g(x) - f(x)g'(x)$ $(g(x))^{2}$ • $\frac{d}{dx}(f \circ g)(x) = \frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$ \bullet $\frac{d}{1}$ $\frac{u}{dx}(x^n) = nx^{n-1}$ \bullet $\frac{d}{1}$ $\frac{a}{dx}(a^x) = (\ln a)a^x$ \bullet $\frac{d}{1}$ $\frac{a}{dx}(e^x) = e^x$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(\log_a x) = \frac{d}{dx}$ $\frac{d}{dx}(\log_a|x|) = \frac{1}{(\ln a)}$ $(\ln a)x$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(\ln x) = \frac{d}{dx}$ $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$ \boldsymbol{x} \bullet $\frac{d}{1}$ $\frac{d}{dx}(\sin x) = \cos x$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(\cos x) = -\sin x$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(\tan x) = \sec^2 x$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(\cot x) = -\csc^2 x$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(\sec x) = \sec x \tan x$ \bullet $\frac{d}{1}$ $\frac{d}{dx}(\csc x) = -\csc x \cot x$ • $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1-x^2}$, for $-1 < x < 1$ • $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1-x^2}$, for $-1 < x < 1$ • $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$ \bullet $\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{|x|\sqrt{x}}$ $\frac{1}{|x|\sqrt{x^2-1}}$, for $|x|>1$ • $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x}}$ $\frac{1}{|x|\sqrt{x^2-1}}$, for $|x|>1$ • $\frac{d}{dx}(\cot^{-1} x) = -\frac{1}{1+x^2}$

The Mean Value Theorem: Let f be a function that satisfies the following: f is continuous on $[a, b]$ and differentiable on (a, b) , then there is a number c in (a, b) such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$
 or equivalently $f'(c)(b - a) = f(b) - f(a)$

Derivatives and Graphing

- Steps for finding absolute extrema on $[a, b]$:
	- (1) Find all critical numbers in (a, b) and evaluate the function at those values.
	- (2) Find $f(a)$ and $f(b)$
	- (3) Compare
- The First Derivative Test: Suppose that c is a critical number of f .
	- If f' changes from positive to negative at $x = c$, then f has a local maximum at $x = c$
	- If f' changes from negative to positive at $x = c$, then f has a local minimum at $x = c$
	- If f' does not change signs at $x = c$, then there is neither a local max nor a local min at $x = c$
- The Second Derivative Test:
	- If $f'(c) = 0$ and $f''(c) > 0$, then f has a local minimum at $x = c$
	- if $f'(c) = 0$ and $f''(c) < 0$, then f has a local maximum at $x = c$
	- If $f'(c) = 0$ and $f''(c) = 0$, then the test is inconclusive.
- Steps for Curve Sketching:
	- (1) Find the x and y intercepts of the function
	- (2) Check for symmetry
		- (a) If $f(-x) = f(x)$, the graph has y-axis symmetry
		- (b) If $f(-x) = -f(x)$, the graph has origin symmetry
	- (3) Determine the domain and the location of any asymptotes
	- (4) Use the first derivative to find intervals of increase, intervals of decrease, and the location of any local extrema
	- (5) Use the second derivative to find intervals of concavity and the location of any inflection points
	- (6) Sketch the curve using the above information
- Steps for Solving Optimization Problems:
	- (1) Read the problem and draw a picture if necessary.
	- (2) Determine the relevant equations. Typically there are two: the objective equation and the constraint equation.
	- (3) Use the constraint equation to rewrite the objective equation in terms of one variable.
	- (4) Use a derivative test to find the absolute maximum or absolute minimum

Linearization Equation: $f(x) \approx L(x) = f(a) + f'(a)(x - a)$

L'Hospital's Rule (or L'Hôpital's Rule): Suppose f and g are differentiable functions with $g'(x) \neq 0$ when $x \neq a$. If $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ or if $\lim_{x\to a} f(x) = \pm \infty$ and $\lim_{x\to a} g(x) = \pm \infty$, then

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
$$

provided the limit on the right exists (or is $\pm \infty$). This also applies if $x \to \pm \infty$, $x \to a^+$, or $x \to a^-$

Integration and Antiderivatives:

- $\int x^n dx = \frac{x^{n+1}}{n+1}$ $\frac{x}{n+1}$ + C if $n \neq -1$ • $\int x^{-1} dx = \ln |x| + C$
- $\int kf(x) dx = k \int f(x) dx$, where k is a constant
- $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx$
- \bullet $\int e^x dx = e^x + C$
- $\int e^{kx} dx = \frac{e^{kx}}{k}$ $\frac{k}{k}$ + C
- $\int a^x dx = \frac{a^x}{\ln a}$ $\frac{a}{\ln a}$ + C If $a > 0$, $a \neq 1$
- $\int a^{kx} dx = \frac{a^{kx}}{k \ln a}$ $\frac{a}{k \ln a}$ + C If $a > 0$, $a \neq 1$
- $\int \sin x \, dx = -\cos x + C$ • $\int \cos x \, dx = \sin x + C$ • $\int \sec^2 x \, dx = \tan x + C$
	- $\int \csc^2 x \, dx = -\cot x + C$
	- $\int \sec x \tan x \, dx = \sec x + C$
	- $\int \csc x \cot x \, dx = -\csc x + C$